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PREFACE

In January 1978, I began the preface to the first edition of Digital Image Processing
with the following statement:

“The field of image processing has grown considerably during the past
decade with the increased utilization of imagery in myriad applications
coupled with improvements in the size, speed and cost effectiveness of dig-
ital computers and related signal processing technologies. Image processing
has found a significant role in scientific, industrial, space and government
applications.”

In January 1991, in the preface to the second edition, I stated:

“Thirteen years later as I write this preface to the second edition, I find
the quoted statement still to be valid. The 1980s have been a decade of sig-
nificant growth and maturity in this field. At the beginning of that decade,
many image processing techniques were of academic interest only; their
execution was too slow and too costly. Today, thanks to algorithmic and
implementation advances, image processing has become a vital cost-effec-
tive technology in a host of applications.”

In August 2000, in the preface to the third edition, I wrote:

“Now, in this beginning of the twenty-first century, image processing
has become a mature engineering discipline. But advances in the theoreti-
cal basis of image processing continue. Some of the reasons for this third
edition of the book are to correct defects in the second edition, delete con-
tent of marginal interest, and add discussion of new, important topics.
Another motivating factor is the inclusion of interactive, computer display

xiii



xiv PREFACE

imaging examples to illustrate image processing concepts. Finally, this
third edition includes computer programming exercises to bolster its theo-
retical content. These exercises can be implemented using the Program-
mer’s Imaging Kernel System (PIKS) application program interface (API).
PIKS is an International Standards Organization (ISO) standard library of
image processing operators and associated utilities.”

Again, for a fourth time, a new edition of Digital Image Processing is offered to
the image processing community. Why? One reason is because advances in the the-
oretical aspects of image processing technology continue at a rapid rate. For exam-
ple, in the year 2005, the IEEE Transactions on Image Processing published 2191
pages of research papers. The IEEE Transactions on Pattern Analysis and Machine
Intelligence was in close second place in 2005 with 2002 published pages. Add to
that the content of independent journals, such as the John Wiley & Sons Interna-
tional Journal of Imaging Systems and Technology plus numerous image processing
technical conferences. There is an enormous amount of new image processing tech-
nology to be absorbed. I have tried to act as a publishing filter by culling through the
image processing literature since the third edition was published in 2002, and then
abstracting what I think are the most important contributions. Details follow.

Another reason for publication of the fourth edition of Digital Image Processing
is to make available, at no cost, the PIKS Scientific API for educational purposes
and for industrial software development. The PIKS Scientific software is on a CD
affixed to the back cover of this book. PIKS Scientific includes implementations of
most of the high-level operators in this book.

The book is intended to be an “industrial strength” introduction to digital image
processing to be used as a text for an electrical engineering or computer science
course on the subject. Also, it can be used as a reference manual for scientists who
are engaged in image processing research, developers of image processing hardware
and software systems, and practicing engineers and scientists who use image pro-
cessing as a tool in their applications. Mathematical derivations are provided for
most algorithms. The reader is assumed to have a basic background in linear system
theory, vector space algebra and random processes. Proficiency in C language pro-
gramming is necessary for execution of the image processing programming exer-
cises using PIKS.

The book is divided into six parts. The first three parts cover the basic technolo-
gies that are needed to support image processing applications.

Part 1 contains three chapters concerned with the characterization of continuous
images. Topics include the mathematical representation of continuous images, the
psychophysical properties of human vision, and photometry and colorimetry. No
substantial changes have been made to this fundamental material.

In Part 2, image sampling and quantization techniques are explored along with
the mathematical representation of discrete images. A new section on Color Image
Sampling Systems, such as the Bayer color filter, has been added to Chapter 4.

Part 3 discusses two-dimensional signal processing techniques, including general
linear operators and unitary transforms such as the Fourier, Hadamard, Daubechies
and Karhunen—-Loeve transforms. The final chapter in Part 3 analyzes and compares
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linear processing techniques implemented by direct convolution and Fourier domain
filtering.

The next two parts of the book cover the two principal application areas of image
processing: Image Improvement and Image Analysis.

Part 4 presents a discussion of image enhancement and restoration techniques,
including restoration models, point and spatial restoration and geometrical image
modification. Chapter 10 on Image Enhancement contains new material on Contrast
Manipulation, Histogram Modification Noise Cleaning and Color Image Enhance-
ment. Content on Blind Image Restoration and Multi-Plane Image Restoration has
been added to Chapter 12, Image Restoration Techniques. A new section on Polar
Coordinate Conversion has been included in the chapter on Geometrical Image
Modification.

Part 5, entitled Image Analysis, concentrates on the extraction of information
from an image. Specific topics include morphological image processing, edge
detection, image feature extraction, image segmentation, object shape analysis and
object detection. Additional material on Structuring Element Decomposition has
been included in the Morphological Image Processing chapter. The sections on First
Order Derivative Edge Detection and Color Edge Detection in Chapter 15 have
been augmented. Material has been added on Texture Features in Chapter 16. In the
chapter on Image Segmentation, material has been added on Amplitude, Region,
Boundary and Texture Segmentation. New content on Distance, Perimeter and Area
Measurements has been added to the Shape Analysis chapter. A new section on
Non-morphological Thinning and Skeletonizing has been included in the chapter.
Finally, new material has been added on Template Matching and Image Registration
in Chapter 19.

Part 6 discusses the software implementation of image processing applications.
This part describes the PIKS API and explains its use as a means of implementing
image processing algorithms. Image processing programming exercises are included
in Part 6.

Throughout the first 19 chapters on the theoretical basis of image processing, up-
to-date references of papers judged to be of significance have been included as a
guide for extended study.

Although readers should find this book reasonably comprehensive, many impor-
tant topics allied to the field of digital image processing have been omitted to limit
the size and cost of the book. Among the most prominent omissions are the topics of
pattern recognition, image reconstruction from projections, image understanding,
image coding, scientific visualization and computer graphics.

WILLIAM K. PRATT

Los Altos, California
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PART 1

CONTINUOUS IMAGE
CHARACTERIZATION

Although this book is concerned primarily with digital, as opposed to analog, image
processing techniques. It should be remembered that most digital images represent
continuous natural images. Exceptions are artificial digital images such as test
patterns that are numerically created in the computer and images constructed by
tomographic systems. Thus, it is important to understand the “physics” of image
formation by sensors and optical systems including human visual perception.
Another important consideration is the measurement of light in order quantitatively
to describe images. Finally, it is useful to establish spatial and temporal
characteristics of continuous image fields, which provide the basis for the
interrelationship of digital image samples. These topics are covered in the following
chapters.






CONTINUOUS IMAGE
MATHEMATICAL CHARACTERIZATION

In the design and analysis of image processing systems, it is convenient and often
necessary mathematically to characterize the image to be processed. There are two
basic mathematical characterizations of interest: deterministic and statistical. In
deterministic image representation, a mathematical image function is defined and
point properties of the image are considered. For a statistical image representation,
the image is specified by average properties. The following sections develop the
deterministic and statistical characterization of continuous images. Although the
analysis is presented in the context of visual images, many of the results can be
extended to general two-dimensional time-varying signals and fields.

1.1. IMAGE REPRESENTATION

Let C(x,y, 1, A) represent the spatial energy distribution of an image source of radi-
ant energy at spatial coordinates (x, y), at time ¢ and wavelength L. Because light
intensity is a real positive quantity, that is, because intensity is proportional to the
modulus squared of the electric field, the image light function is real and nonnega-
tive. Furthermore, in all practical imaging systems, a small amount of background
light is always present. The physical imaging system also imposes some restriction
on the maximum intensity of an image, for example, film saturation and cathode ray
tube (CRT) phosphor heating. Hence it is assumed that

0<Clx,y, 1, L)< A (1.1-1)

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.



4 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

where A is the maximum image intensity. A physical image is necessarily limited in
extent by the imaging system and image recording media. For mathematical sim-
plicity, all images are assumed to be nonzero only over a rectangular region
for which

L <x<L (1.1-2a)

(1.1-2b)

The physical image is, of course, observable only over some finite time interval.
Thus, let

_T<i<T (1.1-2¢)

The image light function C(x,y,t, L) is, therefore, a bounded four-dimensional
function with bounded independent variables. As a final restriction, it is assumed
that the image function is continuous over its domain of definition.

The intensity response of a standard human observer to an image light function is
commonly measured in terms of the instantaneous luminance of the light field as
defined by

Y(x, y, 1) = f: Cx, y, £, M) V(L) d\ (1.1-3)

where V(L) represents the relative luminous efficiency function, that is, the spectral
response of human vision. Similarly, the color response of a standard observer is
commonly measured in terms of a set of tristimulus values that are linearly propor-
tional to the amounts of red, green and blue light needed to match a colored light.
For an arbitrary red—green—-blue coordinate system, the instantaneous tristimulus
values are

R(x,y,1) = j:C(x, ¥ 6, MRg(A) d (1.1-4a)
G(x,y,1) = j: Clx, y, 1, M)Gg(A) d (1.1-4b)
B(x,y,1) = f: C(x,y, 1, \)Bg(L) d. (1.1-4c)

where Ry(L), G4(A), B4(L) are spectral tristimulus values for the set of red, green
and blue primaries. The spectral tristimulus values are, in effect, the tristimulus
values required to match a unit amount of narrowband light at wavelength A. In a
multispectral imaging system, the image field observed is modeled as a spectrally
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weighted integral of the image light function. The ith spectral image field is then
given as

Fi(x,y,0) = j: C(x, y, 1, M)S;(h) d\ (1.1-5)

where S;()) is the spectral response of the ith sensor.

For notational simplicity, a single image function F(x,y, r) is selected to repre-
sent an image field in a physical imaging system. For a monochrome imaging sys-
tem, the image function F(x, y, r) nominally denotes the image luminance, or some
converted or corrupted physical representation of the luminance, whereas in a color
imaging system, F(x,y, ) signifies one of the tristimulus values, or some function
of the tristimulus value. The image function F(x,y, t) is also used to denote general
three-dimensional fields, such as the time-varying noise of an image scanner.

In correspondence with the standard definition for one-dimensional time signals,
the time average of an image function at a given point (x, y) is defined as

(F(r,y. 1)y = Tlgrlm[ziT [ Fe oL dz} (1.1-6)

where L(7) is a time-weighting function. Similarly, the average image brightness at a
given time is given by the spatial average,

i [ b : _
Py s = tim | o[ [[) Py vy (1.1-7)
Ly— e

In many imaging systems, such as image projection devices, the image does not
change with time, and the time variable may be dropped from the image function.
For other types of systems, such as movie pictures, the image function is time sam-
pled. It is also possible to convert the spatial variation into time variation, as in tele-
vision, by an image scanning process. In the subsequent discussion, the time
variable is dropped from the image field notation unless specifically required.

1.2. TWO-DIMENSIONAL SYSTEMS

A two-dimensional system, in its most general form, is simply a mapping of some
input set of two-dimensional functions F(x, y), F(x, y),..., Fa(x, y) to a set of output
two-dimensional functions Gi(x, y), Gy(x, y),..., Gy(x, y), where (—eo<ux,y<eo)
denotes the independent, continuous spatial variables of the functions. This mapping
may be represented by the operators O, {.} for m = 1, 2,..., M, which relate the
input to output set of functions by the set of equations
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G[(-x’ )’) = 01{F1(X7Y),F2(x> )’), "~7FN(x7 )’)}
Gm(-x, )’) = Om{Fl(x’ )’)7 F2()C, )’)7 “"FN(-X’ )’)}
GM(-X’ )’) = OM{FI(-X’ )’)7 F2(.X, )’)7 cre FN(-X’ )’)}

(1.2-1)

In specific cases, the mapping may be many-to-few, few-to-many, or one-to-one.
The one-to-one mapping is defined as

G(x,y) = O{F(x,y)} (1.2-2)

To proceed further with a discussion of the properties of two-dimensional systems, it
is necessary to direct the discourse toward specific types of operators.

1.2.1. Singularity Operators

Singularity operators are widely employed in the analysis of two-dimensional
systems, especially systems that involve sampling of continuous functions. The two-
dimensional Dirac delta function is a singularity operator that possesses the follow-
ing properties:

f jg 8(x, y)dedy= 1 for £>0 (1.2-32)
—gv-¢

|77 FEM8G -8 y-n)didn = F(x,y) (1.2-3b)

In Eq. 1.2-3a, € is an infinitesimally small limit of integration; Eq. 1.2-3b is called
the sifting property of the Dirac delta function.

The two-dimensional delta function can be decomposed into the product of two
one-dimensional delta functions defined along orthonormal coordinates. Thus

3(x,y) = 8(x)8(y) (1.2-4)

where the one-dimensional delta function satisfies one-dimensional versions of Eq.
1.2-3. The delta function also can be defined as a limit on a family of functions.
General examples are given in References 1 and 2.

1.2.2. Additive Linear Operators

A two-dimensional system is said to be an additive linear system if the system obeys
the law of additive superposition. In the special case of one-to-one mappings, the
additive superposition property requires that

Ola Fi(x,y)+a,Fy(x,y)} = a;O{F(x,y)} +a,0{F,(x,y)} (1.2-5)
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where a; and a, are constants that are possibly complex numbers. This additive
superposition property can easily be extended to the general mapping of Eq. 1.2-1.

A system input function F(x, y) can be represented as a sum of amplitude-
weighted Dirac delta functions by the sifting integral,

Fy) = [~ |7 F&E M8 -&y-n)dEdn (1.2:6)

where F(E, 1) is the weighting factor of the impulse located at coordinates (&, 1) in
the x—y plane, as shown in Figure 1.2-1. If the output of a general linear one-to-one
system is defined to be

G(x,y) = O{F(x.)} (1.2-7)
then
G(x,y) = 0{ [ PEmde-8 y-m)dt dn} (1.2-8a)
or
G(xy) = [T [7 FEMO{8(x~& y-n)} dEdn (1.2-8b)

In moving from Eq. 1.2-8a to Eq. 1.2-8b, the application order of the general lin-
ear operator O{ - } and the integral operator have been reversed. Also, the linear
operator has been applied only to the term in the integrand that is dependent on the

/oy
}F({,n)
Womm /
{A X

FIGURE1.2-1. Decomposition of image function.
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spatial variables (x, y). The second term in the integrand of Eq. 1.2-8b, which is
redefined as

H(x,y;§,m)=0{8(x-& y-n)} (1.2-9)

is called the impulse response of the two-dimensional system. In optical systems, the
impulse response is often called the point spread function of the system. Substitu-
tion of the impulse response function into Eq. 1.2-8b yields the additive superposi-
tion integral

G(vy) = [ [T FEMH(, ;& mddn (1.2-10)

An additive linear two-dimensional system is called space invariant (isoplanatic) if
its impulse response depends only on the factors x - & and y-m . In an optical sys-
tem, as shown in Figure 1.2-2, this implies that the image of a point source in the
focal plane will change only in location, not in functional form, as the placement of
the point source moves in the object plane. For a space-invariant system

H(x,y;&m) = Hx-& y-m) (1.2-11)

and the superposition integral reduces to the special case called the convolution inte-
gral, given by

Gy) = [ [7 FEMHE-& y-m) didn (1.2-12a)

Symbolically,

G(x,y) = F(x,y) ®H(x,y) (1.2-12b)

INPUT LENS OUTPUT
PLANE PLANE

FIGURE 1.2-2. Point-source imaging system.
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(d) Hx =&y =) (e) FLEMH{x—L yv—n)

FIGURE 1.2-3. Graphical example of two-dimensional convolution.

denotes the convolution operation. The convolution integral is symmetric in the
sense that

G(xy) = [7 [7 Fx~&y-mH(E n) dEdn (1.2-13)

Figure 1.2-3 provides a visualization of the convolution process. In Figure 1.2-3a
and b, the input function F(x, y) and impulse response are plotted in the dummy
coordinate system (&,m). Next, in Figures 1.2-3¢ and d, the coordinates of the
impulse response are reversed, and the impulse response is offset by the spatial val-
ues (x, y). In Figure 1.2-3e, the integrand product of the convolution integral of
Eq. 1.2-12 is shown as a crosshatched region. The integral over this region is the
value of G(x, y) at the offset coordinate (x, y). The complete function F(x, y) could,
in effect, be computed by sequentially scanning the reversed, offset impulse
response across the input function and simultaneously integrating the overlapped
region.

1.2.3. Differential Operators

Edge detection in images is commonly accomplished by performing a spatial dif-
ferentiation of the image field followed by a thresholding operation to determine
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points of steep amplitude change. Horizontal and vertical spatial derivatives are
defined as

4 = 9Fxy) (1.2-14a)
* ox

d = 9Exy) (1.2-14b)
y dy

The directional derivative of the image field along a vector direction z subtending an
angle ¢ with respect to the horizontal axis is given by (3, p. 106)

V{F(x,y)} = aF(a_);,y) = d cos O+ dysinQ) (1.2-15)

The gradient magnitude is then

V{F(x Y = Jd; +d; (1.2-16)

Spatial second derivatives in the horizontal and vertical directions are defined as

2
d, = aszy) (1.2-17a)
ox
I F(x,y)
dy, = —z’y (1.2-17b)
) %

The sum of these two spatial derivatives is called the Laplacian operator:

2 2
VA F(x,y)y = $E02) 9 FCey) (1.2-18)
ox dy

1.3. TWO-DIMENSIONAL FOURIER TRANSFORM

The two-dimensional Fourier transform of the image function F(x, y) is defined as
(1,2)

Ao, 0,) = [~ [7 Fxy)exp{-i(ox+oy)}drdy (1.3-1)

where o, and o, are spatial frequencies and i = ,/~1. Notationally, the Fourier
transform is written as

o, 0,) = O {F(x,y)} (1.3-2)
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In general, the Fourier coefficient Hw,, ®,) is a complex number that may be repre-
sented in real and imaginary form,

Ho, 0,) = Ko, o) +il(o, o) (1.3-3a)

or in magnitude and phase-angle form,

Ho,, (oy) = Mo,, my) exp{id(w,, my)} (1.3-3b)
where
2 172
M0, 0,) = [F(0,0,)+ (0, 0,)] (1.3-4a)
B l(o,, my) )
oo, ) = arctan{m} (1.3-4b)

A sufficient condition for the existence of the Fourier transform of F(x, y) is that the
function be absolutely integrable. That is,

J._OOMJ._D;‘F(X’ y)| dx dy < oo (1.3-5)

The input function F(x, y) can be recovered from its Fourier transform by the inver-
sion formula

F(x,y) = 4_1”:]: Ao, o) expli@x+oy)}do,do,  (1.3-62)
'

or in operator form
F(x,y) = 0, { Ao, 0)} (1.3-6b)

The functions F(x, y) and Hw,, o) are called Fourier transform pairs.
The two-dimensional Fourier transform can be computed in two steps as a result
of the separability of the kernel. Thus, let

7(0,.3) = [ Flxy)exp{-i(@x)} dr (1.3-7)



12 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

then
Ao, 0,) = f_w T (0, y)exp{-i(oy)} dy (1.3-8)

Several useful properties of the two-dimensional Fourier transform are stated
below. Proofs are given in References 1 and 2.

Separability. 1f the image function is spatially separable such that
F(x,y) = f(0)f,(y) (1.3-9)
then
F(o,0) = f(0)f (o) (1.3-10)

where f (»,) and fy(my) are one-dimensional Fourier transforms of f,(x) and 00,
respectively. Also, if F(x,y) and 7(®,, ®,) are two-dimensional Fourier transform
pairs, the Fourier transform of F*(x,y) is 7¥(-o, -0,). An asterisk”™ used as a
superscript denotes complex conjugation of a variable (i.e. if F = A +iB, then
F* = A—iB). Finally, if F(x,y) is symmetric such that F(x,y) = F(-x,-y), then
Fo,, (oy) = F(-o, —(oy).

Linearity. The Fourier transform is a linear operator. Thus

O laF|(x,y)+bFy(x,y)} = af(0, (Dy) +bFH(w, “)y) (1.3-11)

where a and b are constants.

Scaling. A linear scaling of the spatial variables results in an inverse scaling of the
spatial frequencies as given by

[ I0)
0 AF(ax, by)} = ‘a—lb-‘?(f, —bX) (13-12)

Hence, stretching of an axis in one domain results in a contraction of the corre-
sponding axis in the other domain plus an amplitude change.

Shift. A positional shift in the input plane results in a phase shift in the output
plane:

Op{F(x-a,y-b)} = Ho, o)exp {-i(wa+ob)} (1.3-13a)
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Alternatively, a frequency shift in the Fourier plane results in the equivalence
0, { Hw,~a,0,~b)} = F(x,y)exp {i(ax+by)} (1.3-13b)

Convolution. The two-dimensional Fourier transform of two convolved functions is
equal to the products of the transforms of the functions. Thus

Op{F(x,y) ®H(x,y)} = o, 0)H o, o) (1.3-14)
The inverse theorem states that

O F(x)H(x.Y)} = = H0, 0,) ®H(0, 0,) (1.3-15)
4n

Parseval’s Theorem. The energy in the spatial and Fourier transform domains is
related by

[P pPasdy = =57 7 st0, @) do.da, (1316
T

Autocorrelation Theorem. The Fourier transform of the spatial autocorrelation of a
function is equal to the magnitude squared of its Fourier transform. Hence

of{f";r;F(a, BYF*(o.—x, P—y) dadﬁ} = |7 (o, my)\z (1.3-17)

Spatial Differentials. The Fourier transform of the directional derivative of an
image function is related to the Fourier transform by

IF(x, V)| _ .
Of{Ty} = -io, F(o, (,oy) (1.3-18a)
07{31”%_);”} = 0, F(0,, 0,) (1.3-18b)

Consequently, the Fourier transform of the Laplacian of an image function is equal to

2 2
Of{a Fx,y), 9 F(x’y)} = (0’ +0)) Ao, o) (1.3-19)
2 2 X y X2 2y

ox dy
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The Fourier transform convolution theorem stated by Eq. 1.3-14 is an extremely use-
ful tool for the analysis of additive linear systems. Consider an image function
F(x,y) that is the input to an additive linear system with an impulse response
H(x,y) . The output image function is given by the convolution integral

G(x,y) = j_";j_";F(a, B)H(x - a,y—P)do. dp (1.3-20)

Taking the Fourier transform of both sides of Eq. 1.3-20 and reversing the order of
integration on the right-hand side results in

G0, 0) = [ [7 Flo, B)D.:OJ.:H(X— o,y - B)exp{—i(ox+ myy)}dxdy} do. dp

(1.3-21)

By the Fourier transform shift theorem of Eq. 1.3-13, the inner integral is equal to
the Fourier transform of H(x,y) multiplied by an exponential phase-shift factor.
Thus

Go,0,) = J_D; j_iF(a, B)H(w,, o )exp {-i(00+wB)}doadB (1.3-22)

Performing the indicated Fourier transformation gives

G0, 0) = Ho, o) Ko, o,) (1.3-23)
Then an inverse transformation of Eq. 1.3-23 provides the output image function

G(x,y) = Lzr’ r’ H o, 0) Ao, ) expli@x+oy)do do, (1.3-24)
4 Tt

Equations 1.3-20 and 1.3-24 represent two alternative means of determining the out-
put image response of an additive, linear, space-invariant system. The analytic or
operational choice between the two approaches, convolution or Fourier processing,
is usually problem dependent.

1.4. IMAGE STOCHASTIC CHARACTERIZATION

The following presentation on the statistical characterization of images assumes gen-
eral familiarity with probability theory, random variables and stochastic processes.
References 2 and 4 to 7 can provide suitable background. The primary purpose of the
discussion here is to introduce notation and develop stochastic image models.
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It is often convenient to regard an image as a sample of a stochastic process. For
continuous images, the image function F(x, y, 7) is assumed to be a member of a con-
tinuous three-dimensional stochastic process with space variables (x, y) and time
variable ().

The stochastic process F(x, y, ) can be described completely by knowledge of its
Jjoint probability density

piF, Fy.., F1§X1, Yis I X0 Yoo by oo X153 Vs [j}

for all sample points J, where (x; y; ;) represent space and time samples of image
function Fj(x; y;, t;). In general, high-order joint probability densities of images are
usually not known, nor are they easily modeled. The first-order probability density
p(F; x, y, t) can sometimes be modeled successfully on the basis of the physics of the
process or histogram measurements. For example, the first-order probability density
of random noise from an electronic sensor is usually well modeled by a Gaussian
density of the form

[F(x,y, 1) =M p(x, v, 0]

267(x, v, 1)

1ﬂnxxﬂ=[%wﬁnxnf”2mﬁ } (14-1)

where the parameters n(x, y, 1) and Gi (x, v, t) denote the mean and variance of the
process. The Gaussian density is also a reasonably accurate model for the probabil-
ity density of the amplitude of unitary transform coefficients of an image. The
probability density of the luminance function must be a one-sided density because
the luminance measure is positive. Models that have found application include the
Rayleigh density,

2
piF;x,y,t} = F(x,;z, ) exp{ [F(x,y,zt)] } (1.4-2a)
o 20

the log-normal density,

[bﬁFuJJH—nAL%Of}

2 2 -1/2
p{F;x, )77 t} = [ZTEF (.X, ))7 t)GF(x7 y’ [)] exp{ 2
207(x, y, 1)

(1.4-2b)
and the exponential density,

PiF; x, y,t} = ovexp{—a|F(x,y, )|} (1.4-2¢)
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all defined for F>0, where o is a constant. The two-sided, or Laplacian density,

PLF; x, y,1} = %‘exp{—a\F(x, v 0} (1.4-3)

where o is a constant, is often selected as a model for the probability density of the
difference of image samples. Finally, the uniform density

plFx,y, 1} = = (1.4-4)
27

for -n < F <7 is a common model for phase fluctuations of a random process. Con-
ditional probability densities are also useful in characterizing a stochastic process.
The conditional density of an image function evaluated at (x, y,,#;) given knowl-
edge of the image function at (x,, y,, t,) is defined as

p{Fl, Fz;-xl, )’17 t17 .X2, }’2, tz}
PAF5; X5, ¥o, 15}

PiF XYy tl‘F2§xzy)’2, Lt = (1.4-5)

Higher-order conditional densities are defined in a similar manner.
Another means of describing a stochastic process is through computation of its
ensemble averages. The first moment or mean of the image function is defined as

ey ) = E{F(xy.0} = [ FuyopiFixy.0df - (14-6)

where E{-} is the expectation operator, as defined by the right-hand side of Eq.
1.4-6.
The second moment or autocorrelation function is given by

R(x(, ¥, 15 X0, Yoo ty) = E{F(xy, ¥y, 1) F*(x5, v5, 15) } (1.4-7a)
or in explicit form

R(xl,yl,tl;xz,yz, tz) = J. J. F(xl,xl,yl)F*(xz, YVo» tz)

XPUF, Fays X1, Yt Xy, Yo, 1y YF | dF, (1.4-7b)
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The autocovariance of the image process is the autocorrelation about the mean,
defined as

K(Xl,yl, 115X, Y9, tz) = E{[F(xl,yl, tl)—ﬂp(xl,yl, tl)][F*(xzv Yo tz)_n?(xzv YVo» tz)]}

(1.4-82)
or
K(xp, ys 113%9, Y9, 1) = R(Xp, Yo 115 X9, V5, 1) =M p(Xp, ¥, 1) W (X5, V5, 1)
(1.4-8b)
Finally, the variance of an image process is
Gi(x, v, 1) = K(x,y,t;x,y, 1) (1.4-9)

An image process is called stationary in the strict sense if its moments are unaf-
fected by shifts in the space and time origins. The image process is said to be sta-
tionary in the wide sense if its mean is constant and its autocorrelation is dependent
on the differences in the image coordinates, x; — X, y{ — ¥2, ] — t, and not on their
individual values. In other words, the image autocorrelation is not a function of posi-
tion or time. For stationary image processes,

E{F(.X, Y, t)} = nF (14-103)

R(X|, Y 13X, Yor by) = R(X| = Xp, Y| =Yg 1] — 1) (1.4-10b)

The autocorrelation expression may then be written as

R(tT,, T, T,) = E{F(x+1,y+ T, 1+ T)FE(x, y, 1)} (1.4-11)

Because

R(-t,, -1, -1,) = R¥*(t,, Ty T,) (1.4-12)

then for an image function with F real, the autocorrelation is real and an even func-

tion of 1,1, 1,. The power spectral density, also called the power spectrum, of a
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stationary image process is defined as the three-dimensional Fourier transform of its
autocorrelation function as given by

W0, o, 0,) = L’;L’;L’; R(t, T, T)exp{-i(®,T, +0 1T +01)}dt, dt dt,

(1.4-13)

In many imaging systems, the spatial and time image processes are separable so
that the stationary correlation function may be written as

R(t,, T, T,) = R, (T, T)R(T) (1.4-14)

Furthermore, the spatial autocorrelation function is often considered as the product
of x and y axis autocorrelation functions,

R, (1, 7)) = R(TIR (1)) (1.4-15)

for computational simplicity. For scenes of manufactured objects, there is often a
large amount of horizontal and vertical image structure, and the spatial separation
approximation may be quite good. In natural scenes, there usually is no preferential
direction of correlation; the spatial autocorrelation function tends to be rotationally
symmetric and not separable.

An image field is often modeled as a sample of a first-order Markov process for
which the correlation between points on the image field is proportional to their geo-
metric separation. The autocovariance function for the two-dimensional Markov
process is

R (T,1) = Cexp{— /ociri + ocit}z, } (1.4-16)

where C is an energy scaling constant and o, and o, are spatial scaling constants.
The corresponding power spectrum is

1 2C
Mo, 0,) = (1.4-17)
’ N0 T+ [(oi/ocf + “)5/0‘5]

As a simplifying assumption, the Markov process is often assumed to be of separa-
ble form with an autocovariance function

K. (1,7) = Cexp{- ocx‘rx‘ - ocy‘ry‘} (1.4-18)
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The power spectrum of this process is

4o,0,C

2 2

> 5 (1.4-19)
(o + mx)(ocy + my)

Mo, 0,) =

In the discussion of the deterministic characteristics of an image, both time and
space averages of the image function have been defined. An ensemble average has
also been defined for the statistical image characterization. A question of interest is:
What is the relationship between the spatial-time averages and the ensemble aver-
ages? The answer is that for certain stochastic processes, which are called ergodic
processes, the spatial-time averages and the ensemble averages are equal. Proof of
the ergodicity of a process in the general case is often difficult; it usually suffices to
determine second-order ergodicity in which the first- and second-order space-time
averages are equal to the first- and second-order ensemble averages.

Often, the probability density or moments of a stochastic image field are known
at the input to a system, and it is desired to determine the corresponding information
at the system output. If the system transfer function is algebraic in nature, the output
probability density can be determined in terms of the input probability density by a
probability density transformation. For example, let the system output be related to
the system input by

G()C, Y, Z) = OF{F(xr Y, t)} (14-20)

where O.{-} is a monotonic operator on F(x, y). The probability density of the out-
put field is then

) - PiF: x, y, t} i,
p{G;x, v, t} 40, F(x.y. 01 7dF (1.4-21)

The extension to higher-order probability densities is straightforward, but often cum-
bersome.

The moments of the output of a system can be obtained directly from knowledge
of the output probability density, or in certain cases, indirectly in terms of the system
operator. For example, if the system operator is additive linear, the mean of the sys-
tem output is

E{G(x,y,0)} = E{Op{F(x,y,1)}} = O{E{F(x,y,0)}} (1.4-22)

It can be shown that if a system operator is additive linear, and if the system input
image field is stationary in the strict sense, the system output is also stationary in the
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strict sense. Furthermore, if the input is stationary in the wide sense, the output is
also wide-sense stationary.

Consider an additive linear space-invariant system whose output is described by
the three-dimensional convolution integral

Gy = [ [7 [ Fx—o,y-Bi-y)H(o, B.y)do dBdy  (14-23)
where H(x, y, 1) is the system impulse response. The mean of the output is then

E{G(.y.0} = [T [7 [T E{F(x—o0uy— .1~ }H(0, B, y) dow d dty

(1.4-24)

If the input image field is stationary, its mean 7 is a constant that may be brought
outside the integral. As a result,

E{G(x,y, 1)} = an:f:f:H(a, B,Y)dodB dy = My H(0,0,0) (1.4-25)

where #(0, 0,0) is the transfer function of the linear system evaluated at the origin
in the spatial-time frequency domain. Following the same techniques, it can easily
be shown that the autocorrelation functions of the system input and output are
related by

Rs(T,, Ty T,) = Ry(t,, T 1) ®H(T,, Ty 1) ®H*(-1,, Ty -1,) (1.4-26)

Taking Fourier transforms on both sides of Eq. 1.4-26 and invoking the Fourier
transform convolution theorem, one obtains the relationship between the power
spectra of the input and output image,

We(o,, 0, 0) = W0, 0, 0)Ho,, o, o) * (o, o, o) (1.4-27)
or
We(w,, o, ®,) = W0, o, mt)‘}[(oox, o, wt)‘z (1.4-27b)

This result is found useful in analyzing the effect of noise in imaging systems.
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2

PSYCHOPHYSICAL VISION
PROPERTIES

For efficient design of imaging systems for which the output is a photograph or dis-
play to be viewed by a human observer, it is obviously beneficial to have an under-
standing of the mechanism of human vision. Such knowledge can be utilized to
develop conceptual models of the human visual process. These models are vital in
the design of image processing systems and in the construction of measures of
image fidelity and intelligibility.

2.1. LIGHT PERCEPTION

Light, according to Webster's Dictionary (1), is “radiant energy which, by its action
on the organs of vision, enables them to perform their function of sight.” Much is
known about the physical properties of light, but the mechanisms by which light
interacts with the organs of vision is not as well understood. Light is known to be a
form of electromagnetic radiation lying in a relatively narrow region of the electro-
magnetic spectrum over a wavelength band of about 350 to 780 nanometers (nm). A
physical light source may be characterized by the rate of radiant energy (radiant
intensity) that it emits at a particular spectral wavelength. Light entering the human
visual system originates either from a self-luminous source or from light reflected
from some object or from light transmitted through some translucent object. Let
E()\) represent the spectral energy distribution of light emitted from some primary
light source, and also let 7#(A) and r(L) denote the wavelength-dependent transmis-
sivity and reflectivity, respectively, of an object. Then, for a transmissive object, the

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.
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observed light spectral energy distribution is
C(L) = t(MEN) (2.1-1)
and for a reflective object
C(L) = r(MEN) (2.1-2)
Figure 2.1-1 shows plots of the spectral energy distribution of several common
sources of light encountered in imaging systems: sunlight, a tungsten lamp, a

FIGURE 2.1-1. Spectral energy distributions of common physical light sources.
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light-emitting diode, a mercury arc lamp and a helium—neon laser (2). A human
being viewing each of the light sources will perceive the sources differently. Sun-
light appears as an extremely bright yellowish-white light, while the tungsten light
bulb appears less bright and somewhat yellowish. The light-emitting diode appears
to be a dim green; the mercury arc light is a highly bright bluish-white light; and the
laser produces an extremely bright and pure red beam. These observations provoke
many questions. What are the attributes of the light sources that cause them to be
perceived differently? Is the spectral energy distribution sufficient to explain the dif-
ferences in perception? If not, what are adequate descriptors of visual perception?
As will be seen, answers to these questions are only partially available.

There are three common perceptual descriptors of a light sensation: brightness,
hue and saturation. The characteristics of these descriptors are considered below.

If two light sources with the same spectral shape are observed, the source of
greater physical intensity will generally appear to be perceptually brighter. However,
there are numerous examples in which an object of uniform intensity appears not to
be of uniform brightness. Therefore, intensity is not an adequate quantitative mea-
sure of brightness.

The attribute of light that distinguishes a red light from a green light or a yellow
light, for example, is called the hue of the light. A prism and slit arrangement
(Figure 2.1-2) can produce narrowband wavelength light of varying color. However,
it is clear that the light wavelength is not an adequate measure of color because some
colored lights encountered in nature are not contained in the rainbow of light pro-
duced by a prism. For example, purple light is absent. Purple light can be produced
by combining equal amounts of red and blue narrowband lights. Other counterexam-
ples exist. If two light sources with the same spectral energy distribution are
observed under identical conditions, they will appear to possess the same hue. How-
ever, it is possible to have two light sources with different spectral energy distribu-
tions that are perceived identically. Such lights are called metameric pairs.

The third perceptual descriptor of a colored light is its saturation, the attribute
that distinguishes a spectral light from a pastel light of the same hue. In effect, satu-
ration describes the whiteness of a light source. Although it is possible to speak of
the percentage saturation of a color referenced to a spectral color on a chromaticity
diagram of the type shown in Figure 3.3-3, saturation is not usually considered to be
a quantitative measure.

YELLOW
SUNLIGHT

PRISM

GREEN

BLUE SLIT

FIGURE 2.1-2. Refraction of light from a prism.
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FIGURE 2.1-3. Perceptual representation of light.

As an aid to classifying colors, it is convenient to regard colors as being points in
some color solid, as shown in Figure 2.1-3. The Munsell system of color
classification actually has a form similar in shape to this figure (3). However, to be
quantitatively useful, a color solid should possess metric significance. That is, a unit
distance within the color solid should represent a constant perceptual color
difference regardless of the particular pair of colors considered. The subject of
perceptually significant color solids is considered later.

2.2. EYE PHYSIOLOGY

A conceptual technique for the establishment of a model of the human visual system
would be to perform a physiological analysis of the eye, the nerve paths to the brain,
and those parts of the brain involved in visual perception. Such a task, of course, is
presently beyond human abilities because of the large number of infinitesimally
small elements in the visual chain. However, much has been learned from physio-
logical studies of the eye that is helpful in the development of visual models (4-7).
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FIGURE 2.2-1. Eye cross section.

Figure 2.2-1 shows the horizontal cross section of a human eyeball. The front of
the eye is covered by a transparent surface called the cornea. The remaining outer
cover, called the sclera, is composed of a fibrous coat that surrounds the choroid, a
layer containing blood capillaries. Inside the choroid is the retina, which is com-
posed of two types of receptors: rods and cones. Nerves connecting to the retina
leave the eyeball through the optic nerve bundle. Light entering the cornea is
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FIGURE 2.2-2. Sensitivity of rods and cones based on measurements by Wald.
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focused on the retina surface by a lens that changes shape under muscular control to
perform proper focusing of near and distant objects. An iris acts as a diaphram to
control the amount of light entering the eye.

The rods in the retina are long, slender receptors; the cones are generally shorter
and thicker in structure. There are also important operational distinctions. The rods
are more sensitive than the cones to light. At low levels of illumination, the rods pro-
vide a visual response called scotopic vision. Cones respond to higher levels of illu-
mination; their response is called photopic vision. Figure 2.2-2 illustrates the relative
sensitivities of rods and cones as a function of illumination wavelength (7,8). An eye
contains about 6.5 million cones and 100 million cones distributed over the retina
(4). Figure 2.2-3 shows the distribution of rods and cones over a horizontal line on
the retina (4). At a point near the optic nerve called the fovea, the density of cones is
greatest. This is the region of sharpest photopic vision. There are no rods or cones in
the vicinity of the optic nerve, and hence the eye has a blind spot in this region.
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FIGURE 2.2-3. Distribution of rods and cones on the retina.
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FIGURE 2.2-4. Typical spectral absorption curves of pigments of the retina.

In recent years, it has been determined experimentally that there are three basic
types of cones in the retina (9, 10). These cones have different absorption character-
istics as a function of wavelength with peak absorptions in the red, green and blue
regions of the optical spectrum. Figure 2.2-4 shows curves of the measured spectral
absorption of pigments in the retina for a particular subject (10). Two major points
of note regarding the curves are that the o cones, which are primarily responsible
for blue light perception, have relatively low sensitivity, and the absorption curves
overlap considerably. The existence of the three types of cones provides a physio-
logical basis for the trichromatic theory of color vision.

When a light stimulus activates a rod or cone, a photochemical transition occurs,
producing a nerve impulse. The manner in which nerve impulses propagate through
the visual system is presently not well established. It is known that the optic nerve
bundle contains on the order of 800,000 nerve fibers. Because there are over
100,000,000 receptors in the retina, it is obvious that in many regions of the retina,
the rods and cones must be interconnected to nerve fibers on a many-to-one basis.
Because neither the photochemistry of the retina nor the propagation of nerve
impulses within the eye is well understood, a deterministic characterization of the
visual process is unavailable. One must be satisfied with the establishment of mod-
els that characterize, and hopefully predict, human visual response. The following
section describes several visual phenomena that should be considered in the model-
ing of the human visual process.

2.3. VISUAL PHENOMENA

The visual phenomena described below are interrelated, in some cases only mini-
mally, but in others, to a very large extent. For simplification in presentation and, in
some instances, lack of knowledge, the phenomena are considered disjoint.
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FIGURE 2.3-1. Contrast sensitivity measurements.

Contrast Sensitivity. The response of the eye to changes in the intensity of illumina-
tion is known to be nonlinear. Consider a patch of light of intensity 7+ A/ surrounded
by a background of intensity / (Figure 2.3-1a). The just noticeable difference A/ is to
be determined as a function of 1. Over a wide range of intensities, it is found that the
ratio Al/I, called the Weber fraction, is nearly constant at a value of about 0.02
(11; 12, p. 62). This result does not hold at very low or very high intensities, as illus-
trated by Figure 2.3-1a (13). Furthermore, contrast sensitivity is dependent on the
intensity of the surround. Consider the experiment of Figure 2.3-1b, in which two
patches of light, one of intensity I and the other of intensity 7+ Al, are surrounded
by light of intensity/, . The Weber fraction A7/I for this experiment is plotted in
Figure 2.3-1b as a function of the intensity of the background. In this situation, it is
found that the range over which the Weber fraction remains constant is reduced con-
siderably compared to the experiment of Figure 2.3-1a. The envelope of the lower
limits of the curves of Figure 2.3-1b is equivalent to the curve of Figure 2.3-1a.
However, the range over which Al/I is approximately constant for a fixed back-
ground intensity I, is still comparable to the dynamic range of most electronic
imaging systems.
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Because the differential of the logarithm of intensity is

d(logl) = %’ (2.3-1)
equal changes in the logarithm of the intensity of a light can be related to equal just
noticeable changes in its intensity over the region of intensities, for which the Weber

fraction is constant. For this reason, in many image processing systems, operations are
performed on the logarithm of the intensity of an image point rather than the intensity.

Mach Band. Consider the set of gray scale strips shown in of Figure 2.3-2a. The
reflected light intensity from each strip is uniform over its width and differs from its
neighbors by a constant amount; nevertheless, the visual appearance is that each
strip is darker at its right side than at its left. This is called the Mach band effect (14).
Figure 2.3-2¢ is a photograph of the Mach band pattern of Figure 2.3-2d. In the pho-
tograph, a bright bar appears at position B and a dark bar appears at D. Neither bar
would be predicted purely on the basis of the intensity distribution. The apparent
Mach band overshoot in brightness is a consequence of the spatial frequency
response of the eye. As will be seen shortly, the eye possesses a lower sensitivity to
high and low spatial frequencies than to midfrequencies. The implication for the
designer of image processing systems is that perfect fidelity of edge contours can be
sacrificed to some extent because the eye has imperfect response to high-spatial- fre-
quency brightness transitions.

Simultaneous Contrast. The simultaneous contrast phenomenon (7) is illustrated in
Figure 2.3-3. Each small square is actually the same intensity, but because of the dif-
ferent intensities of the surrounds, the small squares do not appear equally bright.
The hue of a patch of light is also dependent on the wavelength composition of sur-
rounding light. A white patch on a black background will appear to be yellowish if
the surround is a blue light.

Chromatic Adaption. The hue of a perceived color depends on the adaption of a
viewer (15). For example, the American flag will not immediately appear red, white
and blue if the viewer hasbeen subjected to high-intensity red light before viewing the
flag. The colors of the flag will appear to shift in hue toward the red complement, cyan.

FIGURE 2.3-3. Simultaneous contrast.
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Color Blindness. Approximately 8% of the males and 1% of the females in the
world population are subject to some form of color blindness (16, p. 405). There are
various degrees of color blindness. Some people, called monochromats, possess only
rods or rods plus one type of cone, and therefore are only capable of monochromatic
vision. Dichromats are people who possess two of the three types of cones. Both
monochromats and dichromats can distinguish colors insofar as they have learned to
associate particular colors with particular objects. For example, dark roses are
assumed to be red, and light roses are assumed to be yellow. But if a red rose were
painted yellow such that its reflectivity was maintained at the same value, a mono-
chromat might still call the rose red. Similar examples illustrate the inability of
dichromats to distinguish hue accurately.

2.4. MONOCHROME VISION MODEL

One of the modern techniques of optical system design entails the treatment of an
optical system as a two-dimensional linear system that is linear in intensity and can
be characterized by a two-dimensional transfer function (17). Consider the linear
optical system of Figure 2.4-1. The system input is a spatial light distribution
obtained by passing a constant-intensity light beam through a transparency with a
spatial sine-wave transmittance. Because the system is linear, the spatial output inten-
sity distribution will also exhibit sine-wave intensity variations with possible changes
in the amplitude and phase of the output intensity compared to the input intensity. By
varying the spatial frequency (number of intensity cycles per linear dimension) of the
input transparency, and recording the output intensity level and phase, it is possible,
in principle, to obtain the optical transfer function (OTF) of the optical system.

Let 7{(w,, w,) represent the optical transfer function of a two-dimensional linear
system where o, = 2n/T, and o, = 2rn/T, are angular spatial frequencies with
spatial periods 7, and T, in the x and y coordinate directions, respectively. Then,
with I,(x,y) denoting the input intensity distribution of the object and 7, (x,y)

Output
i I, (x,y)
Optical
System
. Hlw,, w))
Input
L(x,y)

FIGURE 2.4-1. Linear systems analysis of an optical system.
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representing the output intensity distribution of the image, the frequency spectra of
the input and output signals are defined as

Z(0,0,) = f;f;[,(x,y)exp{—i(mxx+u)yy)} dx dy (2.4-1)
Zy(o, 0,) = Jj;f;[o(x,y)exp{—i(wxx+myy)}dxdy (2.4-2)

The input and output intensity spectra are related by

Zp(o, o)) = Ho,o)Z(0, ) (2.4-3)

The spatial distribution of the image intensity can be obtained by an inverse Fourier
transformation of Eq. 2.4-2, yielding

Iy(xy) = 4_15 [T Zo@, 0 explitox+ oy dodo,  (24-4)
'

In many systems, the designer is interested only in the magnitude variations of the
output intensity with respect to the magnitude variations of the input intensity, not
the phase variations. The ratio of the magnitudes of the Fourier transforms of the
input and output signals,

Zp(0, o) _
o,y ~ @0 (2.4-5)

is called the modulation transfer function (MTF) of the optical system.

Much effort has been given to application of the linear systems concept to the
human visual system (18-24). A typical experiment to test the validity of the linear
systems model is as follows. An observer is shown two sine-wave grating transpar-
encies, a reference grating of constant contrast and spatial frequency and a variable-
contrast test grating whose spatial frequency is set at a value different from that of
the reference. Contrast is defined as the ratio

max — min
max + min

where max and min are the maximum and minimum of the grating intensity,
respectively. The contrast of the test grating is varied until the brightnesses of the
bright and dark regions of the two transparencies appear identical. In this manner, it
is possible to develop a plot of the MTF of the human visual system. Figure 2.4-2a is
ahypothetical plot of the MTF as a function of the input signal contrast. Another
indication of the form of the MTF can be obtained by observation of the composite
sine-wave grating of Figure 2.4-3, in which spatial frequency increases in one
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FIGURE 2.4-2. Hypothetical measurements of the spatial frequency response of the human
visual system.
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FIGURE 2.4-3. MTF measurements of the human visual system by modulated sine-wave
grating.
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FIGURE 2.4-4. Logarithmic model of monochrome vision.

coordinate direction and contrast increases in the other direction. The envelope of the
visible bars generally follows the MTF curves of Figure 2.4-2a (23).

Referring to Figure 2.4-2a, it is observed that the MTF measurement depends on
the input contrast level. Furthermore, if the input sine-wave grating is rotated rela-
tive to the optic axis of the eye, the shape of the MTF is altered somewhat. Thus, it
can be concluded that the human visual system, as measured by this experiment, is
nonlinear and anisotropic (rotationally variant).

It has been postulated that the nonlinear response of the eye to intensity varia-
tions is logarithmic in nature and occurs near the beginning of the visual information
processing system, that is, near the rods and cones, before spatial interaction occurs
between visual signals from individual rods and cones. Figure 2.4-4 shows a simple
logarithmic eye model for monochromatic vision. If the eye exhibits a logarithmic
response to input intensity, then if a signal grating contains a recording of an expo-
nential sine wave, that is, exp{sin{/,(x, y)}}, the human visual system can be linear-
ized. A hypothetical MTF obtained by measuring an observer's response to an
exponential sine-wave grating (Figure 2.4-2b) can be fitted reasonably well by a sin-
gle curve for low- and mid-spatial frequencies. Figure 2.4-5 is a plot of the measured
MTF of the human visual system obtained by Davidson (25) for an exponential
sine-wave test signal. The high-spatial-frequency portion of the curve has been extrap-
olated for an average input contrast.
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FIGURE 2.4-5. MTF measurements with exponential sine-wave grating.
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The logarithmic/linear system eye model of Figure 2.4-4 has proved to provide a
reasonable prediction of visual response over a wide range of intensities. However,
at high spatial frequencies and at very low or very high intensities, observed
responses depart from responses predicted by the model. To establish a more accu-
rate model, it is necessary to consider the physical mechanisms of the human visual
system.

The nonlinear response of rods and cones to intensity variations is still a subject
of active research. Hypotheses have been introduced suggesting that the nonlinearity
is based on chemical activity, electrical effects and neural feedback. The basic loga-
rithmic model assumes the form

Iy(x,y) = K, log{K, +K;I,(x,y)} (2.4-6)

where the K, are constants and 7,(x,y) denotes the input field to the nonlinearity
and 7,(x,y) is its output. Another model that has been suggested (7, p. 253) follows
the fractional response

K111(x7 y)

(2.4-7)
Ky +1I(x,y)

IO(X,y) =

where K, and K, are constants. Mannos and Sakrison (26) have studied the effect
of various nonlinearities employed in an analytical visual fidelity measure. Their
results, which are discussed in greater detail in Chapter 3, establish that a power law
nonlinearity of the form

I,(x,y) = [L(x, )] (2.4-8)

where s is a constant, typically 1/3 or 1/2, provides good agreement between the
visual fidelity measure and subjective assessment. The three models for the nonlin-
ear response of rods and cones defined by Egs. 2.4-6 to 2.4-8 can be forced to a rea-
sonably close agreement over some mid-intensity range by an appropriate choice of
scaling constants.

The physical mechanisms accounting for the spatial frequency response of the eye
are partially optical and partially neural. As an optical instrument, the eye has limited
resolution because of the finite size of the lens aperture, optical aberrations and the
finite dimensions of the rods and cones. These effects can be modeled by a low-pass
transfer function inserted between the receptor and the nonlinear response element.
The most significant contributor to the frequency response of the eye is the lateral
inhibition process (27). The basic mechanism of lateral inhibition is illustrated in
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FIGURE 2.4-6. Lateral inhibition effect.

Figure 2.4-6. A neural signal is assumed to be generated by a weighted contribution
of many spatially adjacent rods and cones. Some receptors actually exert an inhibi-
tory influence on the neural response. The weighting values are, in effect, the
impulse response of the human visual system beyond the retina. The two-dimen-
sional Fourier transform of this impulse response is the post retina transfer function.

When a light pulse is presented to a human viewer, there is a measurable delay in
its perception. Also, perception continues beyond the termination of the pulse for a
short period of time. This delay and lag effect arising from neural temporal response
limitations in the human visual system can be modeled by a linear temporal transfer
function.

Figure 2.4-7 shows a model for monochromatic vision based on results of the
preceding discussion. In the model, the output of the wavelength-sensitive receptor
is fed to a low-pass type of linear system that represents the optics of the eye. Next
follows a general monotonic nonlinearity that represents the nonlinear intensity
response of rods or cones. Then the lateral inhibition process is characterized by a
linear system with a bandpass response. Temporal filtering effects are modeled by
the following linear system. Hall and Hall (28) have investigated this model exten-
sively and have found transfer functions for the various elements that accurately
model the total system response. The monochromatic vision model of Figure 2.4-7,
with appropriately scaled parameters, seems to be sufficiently detailed for most
image processing applications. In fact, the simpler logarithmic model of Figure
2.4-4 is probably adequate for the bulk of applications.
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FIGURE 2.4-7. Extended model of monochrome vision.

2.5. COLOR VISION MODEL

There have been many theories postulated to explain human color vision, beginning
with the experiments of Newton and Maxwell (29-32). The classical model of
human color vision, postulated by Thomas Young in 1802 (31), is the trichromatic
model in which it is assumed that the eye possesses three types of sensors, each sen-
sitive over a different wavelength band. It is interesting to note that there was no
direct physiological evidence of the existence of three distinct types of sensors until
about 1960 (9,10).

Figure 2.5-1 shows a color vision model proposed by Frei (33). In this model,
three receptors with spectral sensitivities s,(A), s,(A), s;(A), which represent the
absorption pigments of the retina, produce signals

e = IC(k)sl(k) dh (2.5-1a)
ey = j C(M)sy(L) dA (2.5-1b)
ey = jC(x)s3(x) dh (2.5-1¢)

where C(M) is the spectral energy distribution of the incident light source. The three
signals e, e,, e5 are then subjected to a logarithmic transfer function and combined
to produce the outputs

d, = log e (2.5-2a)

d, = loge,—loge, = logig (2.5-2b)
€1

dy = loge;—log e, = log & (2.5-2¢)
e

1
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FIGURE 2.5-1 Color vision model.

Finally, the signals d,, d,, d; pass through linear systems with transfer functions
H(o, ), Ho, o), Ho, o) toproduce output signals g,, g,, g; that provide
the basis for perception of color by the brain.

In the model of Figure 2.5-1, the signals d, and d; are related to the chromaticity
of a colored light while signal 4, is proportional to its luminance. This model has
been found to predict many color vision phenomena quite accurately, and also to sat-
isfy the basic laws of colorimetry. For example, it is known that if the spectral
energy of a colored light changes by a constant multiplicative factor, the hue and sat-
uration of the light, as described quantitatively by its chromaticity coordinates,
remain invariant over a wide dynamic range. Examination of Egs. 2.5-1 and 2.5-2
indicates that the chrominance signals 4, and d, are unchanged in this case, and
that the luminance signal 4, increases in a logarithmic manner. Other, more subtle
evaluations of the model are described by Frei (33).

As shown in Figure 2.2-4, some indication of the spectral sensitivities s,(A) of
the three types of retinal cones has been obtained by spectral absorption measure-
ments of cone pigments. However, direct physiological measurements are difficult
to perform accurately. Indirect estimates of cone spectral sensitivities have been
obtained from measurements of the color response of color-blind people by Konig
and Brodhun (34). Judd (35) has used these data to produce a linear transforma-
tion relating the spectral sensitivity functions s,(A) to spectral tristimulus values
obtained by colorimetric testing. The resulting sensitivity curves, shown in Figure
2.5-2, are unimodal and strictly positive, as expected from physiological consider-
ations (34).

The logarithmic color vision model of Figure 2.5-1 may easily be extended, in
analogy with the monochromatic vision model of Figure 2.4-7, by inserting a linear
transfer function after each cone receptor to account for the optical response of the
eye. Also, a general nonlinearity may be substituted for the logarithmic transfer
function. It should be noted that the order of the receptor summation and the transfer
function operations can be reversed without affecting the output, because both are



COLOR VISION MODEL 41

1]
w
=
O
0.
v
Y]
o
Ll
=
'_
=T
—J
E
0 = [ | |
450 500 550 600 650 nm

WAVELENGTH, nm

FIGURE 2.5-2. Spectral sensitivity functions of retinal cones based on Konig’s data.

linear operations. Figure 2.5-3 shows the extended model for color vision. It is
expected that the spatial frequency response of the g, neural signal through the
color vision model should be similar to the luminance spatial frequency response
discussed in Section 2.4. Sine-wave response measurements for colored lights
obtained by van der Horst et al. (36), shown in Figure 2.5-4, indicate that the chro-
matic response is shifted toward low spatial frequencies relative to the luminance
response. Lateral inhibition effects should produce a low spatial frequency rolloff
below the measured response.

Color perception is relative; the perceived color of a given spectral energy distri-
bution is dependent on the viewing surround and state of adaption of the viewer. A
human viewer can adapt remarkably well to the surround or viewing illuminant of a
scene and essentially normalize perception to some reference white or overall color
balance of the scene. This property is known as chromatic adaption.
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FIGURE 2.5-3. Extended model of color vision.
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FIGURE 2.5-4. Spatial frequency response measurements of the human visual system.

The simplest visual model for chromatic adaption, proposed by von Kries (37,
16, p. 435), involves the insertion of automatic gain controls between the cones and
first linear system of Figure 2.5-2. These gains

a; = [[waosa]” (2.5-3)

for i =1, 2, 3 are adjusted such that the modified cone response is unity when view-
ing a reference white with spectral energy distribution W(A). Von Kries’s model is
attractive because of its qualitative reasonableness and simplicity, but chromatic
testing (16, p. 438) has shown that the model does not completely predict the chro-
matic adaptation effect. Wallis (38) has suggested that chromatic adaption may, in
part, result from a post-retinal neural inhibition mechanism that linearly attenuates
slowly varying visual field components. The mechanism could be modeled by the
low-spatial-frequency attenuation associated with the post-retinal transfer functions
H, (o, o)) of Figure 2.5-3. Undoubtedly, both retinal and post-retinal mechanisms
are responsible for the chromatic adaption effect. Further analysis and testing are
required to model the effect adequately.
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PHOTOMETRY AND COLORIMETRY

Chapter 2 dealt with human vision from a qualitative viewpoint in an attempt to
establish models for monochrome and color vision. These models may be made
quantitative by specifying measures of human light perception. Luminance mea-
sures are the subject of the science of photometry, while color measures are treated
by the science of colorimetry.

3.1. PHOTOMETRY

A source of radiative energy may be characterized by its spectral energy distribution
C(M), which specifies the time rate of energy the source emits per unit wavelength
interval. The total power emitted by a radiant source, given by the integral of the
spectral energy distribution,

P = f‘” C(\) dh (3.1-1)
0

is called the radiant flux of the source and is normally expressed in watts (W).

A body that exists at an elevated temperature radiates electromagnetic energy
proportional in amount to its temperature. A blackbody is an idealized type of heat
radiator whose radiant flux is the maximum obtainable at any wavelength for a body

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
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FIGURE 3.1-1. Blackbody radiation functions.

at a fixed temperature. The spectral energy distribution of a blackbody is given by
Planck’s law (1):

c) = — i (3.1-2)
N lexp{Cy/AT} - 1]

where A is the radiation wavelength, T is the temperature of the body and C, and C,
are constants. Figure 3.1-1a is a plot of the spectral energy of a blackbody as a func-
tion of temperature and wavelength. In the visible region of the electromagnetic
spectrum, the blackbody spectral energy distribution function of Eq. 3.1-2 can be
approximated by Wien’s radiation law (1):

C(;b) = SL‘ (3.1'3)
N exp{C,/AT}

Wien’s radiation function is plotted in Figure 3.1-1b over the visible spectrum.

The most basic physical light source, of course, is the sun. Figure 2.1-1a shows a
plot of the measured spectral energy distribution of sunlight (2). The dashed line in
this figure, approximating the measured data, is a 6000 kelvin (K) blackbody curve.
Incandescent lamps are often approximated as blackbody radiators of a given tem-
perature in the range 1500 to 3500 K (3).

The Commission Internationale de 1'Eclairage (CIE), which is an international
body concerned with standards for light and color, has established several standard
sources of light, as illustrated in Figure 3.1-2 (4). Source Sy is a tungsten filament
lamp. Over the wavelength band 400 to 700 nm, source Sg approximates direct sun-
light, and source S approximates light from an overcast sky. A hypothetical source,
called Illuminant E, is often employed in colorimetric calculations. Illuminant E is
assumed to emit constant radiant energy at all wavelengths.
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FIGURE 3.1-2. CIE standard illumination sources.

Cathode ray tube (CRT) phosphors are often utilized as light sources in image
processing systems. Figure 3.1-3 describes the spectral energy distributions of com-
mon phosphors (5). Monochrome television receivers generally use a P4 phosphor,
which provides a relatively bright blue-white display. Color television displays uti-
lize cathode ray tubes with red, green and blue emitting phosphors arranged in
triad dots or strips. The P22 phosphor is typical of the spectral energy distribution of
commercial phosphor mixtures. Liquid crystal displays (LCDs) typically project a
white light through red, green and blue vertical strip pixels. Figure 3.1-4 is a plot of
typical color filter transmissivities (6).
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FIGURE 3.1-3. Spectral energy distribution of CRT phosphors.
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FIGURE 3.1-4. Transmissivities of LCD color filters.

Photometric measurements seek to describe quantitatively the perceptual bright-
ness of visible electromagnetic energy (7,8). The link between photometric mea-
surements and radiometric measurements (physical intensity measurements) is the
photopic luminosity function, as shown in Figure 3.1-5a (9). This curve, which is a
CIE standard, specifies the spectral sensitivity of the human visual system to optical
radiation as a function of wavelength for a typical person referred to as the standard
observer. In essence, the curve is a standardized version of the measurement of cone
sensitivity given in Figure 2.2-2 for photopic vision at relatively high levels of illu-
mination. The standard luminosity function for scotopic vision at relatively low
levels of illumination is illustrated in Figure 3.1-5b. Most imaging system designs
are based on the photopic luminosity function, commonly called the relative lumi-
nous efficiency.

The perceptual brightness sensation evoked by a light source with spectral energy
distribution C(1) is specified by its luminous flux, as defined by

F = Kmf:" COV(L) dh (3.1-4)
C

where V(L) represents the relative luminous efficiency and K, is a scaling constant.
The modern unit of luminous flux is the lumen (Im), and the corresponding value
for the scaling constant is K, = 685 Im/W. An infinitesimally narrowband source of
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1 W of light at the peak wavelength of 555 nm of the relative luminous efficiency
curve therefore results in a luminous flux of 685 Im.

3.2. COLOR MATCHING

The basis of the trichromatic theory of color vision is that it is possible to match
an arbitrary color by superimposing appropriate amounts of three primary colors
(10-14). In an additive color reproduction system such as color television, the
three primaries are individual red, green and blue light sources that are projected
onto a common region of space to reproduce a colored light. In a subtractive color
system, which is the basis of most color photography and color printing, a white
light sequentially passes through cyan, magenta and yellow filters to reproduce a
colored light.

3.2.1. Additive Color Matching

An additive color-matching experiment is illustrated in Figure 3.2-1. In Figure
3.2-1a, a patch of light (C) of arbitrary spectral energy distribution C(A), as shown
in Figure 3.2-2q, is assumed to be imaged onto the surface of an ideal diffuse
reflector (a surface that reflects uniformly over all directions and all wavelengths).
A reference white light (W) with an energy distribution, as in Figure 3.2-2b, is
imaged onto the surface along with three primary lights (P;), (P;), (P3) whose
spectral energy distributions are sketched in Figure 3.2-2¢ to e. The three primary
lights are first overlapped and their intensities are adjusted until the overlapping
region of the three primary lights perceptually matches the reference white in terms
of brightness, hue and saturation. The amounts of the three primaries A,(W),
A,(W), A5(W) are then recorded in some physical units, such as watts. These are
the matching values of the reference white. Next, the intensities of the primaries
are adjusted until a match is achieved with the colored light (C), if a match is pos-
sible. The procedure to be followed if a match cannot be achieved is considered
later. The intensities of the primaries A (C), A,(C), A;(C) when a match is
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FIGURE 3.2-1. Color matching.

obtained are recorded, and normalized matching values 7,(C), T,(C), T5(C), called
tristimulus values, are computed as

T,(C) = w T,(C) =
1 - AI(W) 2 -

4,(0)
A,(W)

A+(C)
T4(C) = A;’(W)

(3.2-1)

If a match cannot be achieved by the procedure illustrated in Figure 3.2-1a, it is
often possible to perform the color matching outlined in Figure 3.2-15. One of the
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FIGURE 3.2-2. Spectral energy distributions.

primaries, say (Pj3), is superimposed with the light (C), and the intensities of all
three primaries are adjusted until a match is achieved between the overlapping
region of primaries (P) and (P,) with the overlapping region of (P3) and (C). If
such a match is obtained, the tristimulus values are

(3.2-2)

In this case, the tristimulus value 7,(C) is negative. If a match cannot be achieved
with this geometry, a match is attempted between (P;) plus (P3) and (P,) plus (C). If
a match is achieved by this configuration, tristimulus value 7,(C) will be negative.
If this configuration fails, a match is attempted between (P,) plus (P3) and (P;) plus
(O). A correct match is denoted with a negative value for 7,(C).
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Finally, in the rare instance in which a match cannot be achieved by either of the
configurations of Figure 3.2-1a or b, two of the primaries are superimposed with (C)
and an attempt is made to match the overlapped region with the remaining primary.
In the case illustrated in Figure 3.2-1c, if a match is achieved, the tristimulus values
become

A,(C) ~A,(C) ~A4(C)

T,(C) = ———~ T,(C) = T,(C) = (3.2-3)
1 ) 2 3 A3(W)

If a match is not obtained by this configuration, one of the other two possibilities
will yield a match.

The process described above is a direct method for specifying a color quantita-
tively. It has two drawbacks: The method is cumbersome and it depends on the per-
ceptual variations of a single observer. In Section 3.3, standardized quantitative
color measurement is considered in detail.

3.2.2. Subtractive Color Matching

A subtractive color-matching experiment is shown in Figure 3.2-3. An illumination
source with spectral energy distribution E()) passes sequentially through three dye
filters that are nominally cyan, magenta and yellow. The spectral absorption of the
dye filters is a function of the dye concentration. It should be noted that the spec-
tral transmissivities of practical dyes change shape in a nonlinear manner with dye
concentration.

In the first step of the subtractive color-matching process, the dye concentrations
of the three spectral filters are varied until a perceptual match is obtained with a refer-
ence white (W). The dye concentrations are the matching values of the color match
A (W), Ay (W), A;(W). Next, the three dye concentrations are varied until a match is
obtained with a desired color (C). These matching values A,(C), A,(C), A;(C), are
then used to compute the tristimulus values T,(C), T,(C), T5(C), as in Eq. 3.2-1.

FIGURE 3.2-3. Subtractive color matching.
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It should be apparent that there is no fundamental theoretical difference between
color matching by an additive or a subtractive system. In a subtractive system, the
yellow dye acts as a variable absorber of blue light, and with ideal dyes, the yellow
dye effectively forms a blue primary light. In a similar manner, the magenta filter
ideally forms the green primary, and the cyan filter ideally forms the red primary.
Subtractive color systems ordinarily utilize cyan, magenta and yellow dye spectral
filters rather than red, green and blue dye filters because the cyan, magenta and yel-
low filters are notch filters, which permit a greater transmission of light energy than
do narrowband red, green and blue bandpass filters. In color printing, a fourth filter
layer of variable gray level density is often introduced to achieve a higher contrast in
reproduction because common dyes do not possess a wide density range.

3.2.3. Axioms of Color Matching

The color-matching experiments described for additive and subtractive color match-
ing have been performed quite accurately by a number of researchers. It has been
found that perfect color matches sometimes cannot be obtained at either very high or
very low levels of illumination. Also, the color matching results do depend to some
extent on the spectral composition of the surrounding light. Nevertheless, the simple
color matching experiments have been found to hold over a wide range of conditions.

Grassman (15) has developed a set of eight axioms that define trichromatic color
matching and that serve as a basis for quantitative color measurements. In the
following presentation of these axioms, the symbol ¢ indicates a color match; the
symbol @ indicates an additive color mixture; the symbol e indicates units of a color.
These axioms are:

1. Any color can be matched by a mixture of no more than three colored lights.
2. A color match at one radiance level holds over a wide range of levels.

3. Components of a mixture of colored lights cannot be resolved by the human eye.
4

. The luminance of a color mixture is equal to the sum of the luminance of its
components.

5. Law of addition. If color (M) matches color (N) and color (P) matches color (Q),
then color (M) mixed with color (P) matches color (N) mixed with color (Q):

(M) 0 (N) (P) 0 (Q) = [(M) @ (P)] 0 [(N) @ (Q)] (3.2-4)

6. Law of subtraction. If the mixture of (M) plus (P) matches the mixture of (N)
plus (Q) and if (P) matches (Q), then (M) matches (N):

[(M) @ (P)] O [(N) @ (D] N[(P)0(Q)]= (M) (N) (3.2-5)

7. Transitive law. If (M) matches (N) and if (N) matches (P), then (M) matches (P):

[(M) O (NN [(N) O (P)]= (M) O (P) (3.2-6)
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8. Color matching. (a) c units of (C) matches the mixture of m units of (M) plus
n units of (N) plus p units of (P):

ceCOme(M)|®[ne(N)]@[pe(P)] (3.2-7)

or (b) a mixture of ¢ units of C plus m units of M matches the mixture of n
units of N plus p units of P:

[co(O)]@[me(M)]O[ne(N)]®[pe(P)] (3.2-8)

or (c) a mixture of ¢ units of (C) plus m units of (M) plus n units of (V) matches
p units of P:

[ce(O)]@[me(M)]|®[ne(N)]C[pe(P)] (3.2-9)

With Grassman's laws now specified, consideration is given to the development of a
quantitative theory for color matching.

3.3. COLORIMETRY CONCEPTS

Colorimetry is the science of quantitatively measuring color. In the trichromatic
color system, color measurements are in terms of the tristimulus values of a color or
a mathematical function of the tristimulus values.

Referring to Section 3.2.3, the axioms of color matching state that a color C can
be matched by three primary colors Py, P,, P3. The qualitative match is expressed as

(O)Q[A(C) o (PD]®[A(C) o (Py)] ®[A3(C) o (P3)] (3.3-1)

where A (C), A,(C), A;(C) are the matching values of the color (C). Because the
intensities of incoherent light sources add linearly, the spectral energy distribution
of a color mixture is equal to the sum of the spectral energy distributions of its
components. As a consequence of this fact and Eq. 3.3-1, the spectral energy dis-
tribution C(A) can be replaced by its color-matching equivalent according to the
relation

3
C) 0 A (O)P (M) + Ay (O)P, (M) + A5 (C)P5(M) = ¥ A(CIP,(M)  (3.3-2)
j=1

Equation 3.3-2 simply means that the spectral energy distributions on both sides of
the equivalence operator ¢ evoke the same color sensation. Color matching is usually
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specified in terms of tristimulus values, which are normalized matching values, as
defined by

_ A0

3.3-3
= (3.3-3)

7,C)

where A;(W) represents the matching value of the reference white. By this substitu-
tion, Eq. 3.3-2 assumes the form

3
C(\) 0 z TJ-(C)AJ-(W)PJ-(%.) (3.3-4)
j=1

From Grassman’s fourth law, the luminance of a color mixture Y(C) is equal to
the luminance of its primary components. Hence

3
Y(C) = fC(x)V(x)dx =y jAj(C)Pj(x)V(x)dx (3.3-52)
j=1
or
3
ve =y f T(C)A(W)P,(MV(L) d (3.3-5b)
j=1

where V(X) is the relative luminous efficiency and P;(A) represents the spectral
energy distribution of a primary. Equations 3.3-4 and 3.3-5 represent the quantitative
foundation for colorimetry.

3.3.1. Color Vision Model Verification

Before proceeding further with quantitative descriptions of the color-matching pro-
cess, it is instructive to determine whether the matching experiments and the axioms of
color matching are satisfied by the color vision model presented in Section 2.5. In that
model, the responses of the three types of receptors with sensitivities s,(X), s,(A),
s3(A) are modeled as

ey(C) = [CM)s; (1) d) (3.3-6a)
e, (C) =jC(>L)s2(x) d\ (3.3-6b)

e5(0) =fc<x)s3(x) dA (3.3-6¢)
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If a viewer observes the primary mixture instead of C, then from Eq. 3.3-4, substitu-
tion for C(A) should result in the same cone signals e;(C). Thus

3

e (€)=Y Tj(C)Aj(W)ij(x)sl(x) dA (3.3-7a)
j=1
3

) =Y Tj(C)Aj(W)ij(x)sz(mdx (3.3-7b)
j=1
3

e(0) =Y Tj(C)Aj(W)ij(x)s3(x)dx (3.3-7¢)
j=1

Equation 3.3-7 can be written more compactly in matrix form by defining

ki = fpj(msi(mdx (3.3-8)
Then
e,(C) ki kp kg ||A,M) 0 o |1
e(C)| = | kyy  kyy  kng 0 A,W) 0 |[|Ty0)| (.39
e5(0) ky, ki kg 0 0 Ay(W)||T5(0)

or in yet more abbreviated form,

e(C) = KAt(CO) (3.3-10)

where the vectors and matrices of Eq. 3.3-10 are defined in correspondence with
Egs. 3.3-7 to 3.3-9. The vector space notation used in this section is consistent with
the notation formally introduced in Appendix 1. Matrices are denoted as boldface
uppercase symbols, and vectors are denoted as boldface lowercase symbols. It
should be noted that for a given set of primaries, the matrix K is constant valued,
and for a given reference white, the white matching values of the matrix A are con-
stant. Hence, if a set of cone signals ¢;(C) were known for a color (C), the corre-
sponding tristimulus values 7;(C) could in theory be obtained from

t(C) = [KA] 'e(0) (3.3-11)

provided that the matrix inverse of [KA] exists. Thus, it has been shown that with
proper selection of the tristimulus signals 7,(C), any color can be matched in the
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sense that the cone signals will be the same for the primary mixture as for the actual
color C. Unfortunately, the cone signals e,(C) are not easily measured physical
quantities, and therefore, Eq. 3.3-11 cannot be used directly to compute the tristimu-
lus values of a color. However, this has not been the intention of the derivation.
Rather, Eq. 3.3-11 has been developed to show the consistency of the color-matching
experiment with the color vision model.

3.3.2. Tristimulus Value Calculation

It is possible indirectly to compute the tristimulus values of an arbitrary color for
a particular set of primaries if the tristimulus values of the spectral colors (nar-
rowband light) are known for that set of primaries. Figure 3.3-1 is a typical
sketch of the tristimulus values required to match a unit energy spectral color
with three arbitrary primaries. These tristimulus values, which are fundamental to
the definition of a primary system, are denoted as 7 (), T, (A), T (1), where A
is a particular wavelength in the visible region. A unit energy spectral light (Cw)
at wavelength vy with energy distribution §(A-v) is matched according to the
equation

3
ei(Cy) = [S-wsMydr="Y [AWMPMT (W)s;(M)dh  (33-12)
j=1

Now, consider an arbitrary color [C] with spectral energy distribution C(L). At
wavelength v, C(y) units of the color are matched by CONT, (¥), CONT (W),
CT, (v) tristimulus units of the primaries as governed by

3
[Cand—ws(h) dh =Y [A(MPACEWT, (W)s;(M) dr (3.3-13)

j=1

Integrating each side of Eq. 3.3-13 over vy and invoking the sifting integral gives the
cone signal for the color (C). Thus

3
[[ cans—wsiyandy = e(C) = ¥ [[AWP,MCONT, (w)s,(h)dy dh
j=1
(3.3-14)

By correspondence with Eq. 3.3-7, the tristimulus values of (C) must be equivalent
to the second integral on the right of Eq. 3.3-14. Hence

T(C) = [ COIT, (y) dy (3.3-15)
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FIGURE 3.3-1. Tristimulus values of typical red, green and blue primaries required to match
unit energy throughout the spectrum.

From Figure 3.3-1 it is seen that the tristimulus values obtained from solution of
Eq. 3.3-11 may be negative at some wavelengths. Because the tristimulus values
represent units of energy, the physical interpretation of this mathematical result is
that a color match can be obtained by adding the primary with negative tristimulus
value to the original color and then matching this resultant color with the remaining
primary. In this sense, any color can be matched by any set of primaries. However,
from a practical viewpoint, negative tristimulus values are not physically realizable,
and hence there are certain colors that cannot be matched in a practical color display
(e.g., a color television receiver) with fixed primaries. Fortunately, it is possible to
choose primaries so that most commonly occurring natural colors can be matched.

The three tristimulus values T, 75, T'3 can be considered to form the three axes of a
color space as illustrated in Figure 3.3-2. A particular color may be described as a
vector in the color space, but it must be remembered that it is the coordinates of the
vectors (tristimulus values), rather than the vector length, that specify the color. In
Figure 3.3-2, a triangle, called a Maxwell triangle, has been drawn between the three
primaries. The intersection point of a color vector with the triangle gives an indica-
tion of the hue and saturation of the color in terms of the distances of the point from
the vertices of the triangle.

FIGURE 3.3-2. Color space for typical red, green and blue primaries.
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FIGURE 3.3-3. Chromaticity diagram for typical red, green and blue primaries.

Often the luminance of a color is not of interest in a color match. In such situa-
tions, the hue and saturation of color (C) can be described in terms of chromaticity
coordinates, which are normalized tristimulus values, as defined by

T
= —— (3.3-16a)
T1+T2+T3
= T (3.3-16b)
. (3.3-16¢)
t3=T1+T2+T3 2710

Clearly, r; = 1 -1, —1,, and hence only two coordinates are necessary to describe a
color match. Figure 3.3-3 is a plot of the chromaticity coordinates of the spectral
colors for typical primaries. Only those colors within the triangle defined by the
three primaries are realizable by physical primary light sources.

3.3.3. Luminance Calculation

The tristimulus values of a color specify the amounts of the three primaries
required to match a color where the units are measured relative to a match of a
reference white. Often, it is necessary to determine the absolute rather than the
relative amount of light from each primary needed to reproduce a color match.
This information is found from luminance measurements of calculations of a
color match.
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From Eq. 3.3-5 it is noted that the luminance of a matched color Y(C) is equal to
the sum of the luminances of its primary components according to the relation

3
v =y TJ.(C)jAj(C)Pj(x)V(x)dx (3.3-17)
j=1

The integrals of Eq. 3.3-17,

Y(P) = '[AJ.(C)PJ.(X)V(X)dK (3.3-18)

are called luminosity coefficients of the primaries. These coefficients represent the
luminances of unit amounts of the three primaries for a match to a specific reference
white. Hence the luminance of a matched color can be written as

Y(C) = T,(C)Y(P,)+ To(C)Y(P,) + T5(C)Y(P5) (3.3-19)

Multiplying the right and left sides of Eq. 3.3-19 by the right and left sides, respec-
tively, of the definition of the chromaticity coordinate

T,(C
1(C) = 1) (3.3-20)
T,(C) + T,(C) + T4(C)
and rearranging gives
T,(C) = WO (3.321a)
! 1 (C)Y(P)) + 1,(C)Y(P,) + 15(C)Y(P5) '
Similarly,
T,(C) = B(O)X(C) (3.3-21b)
2 1,(C)Y(P)) + 1,(C)Y(P,) + 15(C) Y(P;) ‘
T,(C) = () 1(C) (3.3-21¢)

H(CO)Y(P)) + 1,(O)Y(P,) +13(C)Y(Py)

Thus the tristimulus values of a color can be expressed in terms of the luminance
and chromaticity coordinates of the color.
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3.4. TRISTIMULUS VALUE TRANSFORMATION

From Eq. 3.3-7 it is clear that there is no unique set of primaries for matching colors.
If the tristimulus values of a color are known for one set of primaries, a simple coor-
dinate conversion can be performed to determine the tristimulus values for another
set of primaries (16). Let (Py), (P;), (P3) be the original set of primaries with spec-
tral energy distributions P (A), P,(A), P5(}A), with the units of a match determined
by a white reference (W) with matching values A, (W), A,(W), A;(W). Now, consider
a new set of primaries (P,), (P,), (P3) with spectral energy distributions P;(L),
ﬁz(k), }33(7») . Matches are made to a reference white (W), which may be different
than the reference white of the original set of primaries, by matching values A((W),
AZ(W), 33(W) . Referring to Eq. 3.3-10, an arbitrary color (C) can be matched by the
tristimulus values 7,(C), T,(C), T5;(C) with the original set of primaries or by the
tristimulus values Tl(C), TZ(C), 5"3(C) with the new set of primaries, according to
the matching matrix relations

e(C) = KA(W)t(C) = KA(W)E(C) (3.4-1)

The tristimulus value units of the new set of primaries, with respect to the original
set of primaries, must now be found. This can be accomplished by determining the
color signals of the reference white for the second set of primaries in terms of both
sets of primaries. The color signal equations for the reference white W become

e(W) = KA(WW)t(W) = KA(W)T(W) (3.4-2)
where ~Tl(ﬁl/) = ~T2(‘7V) = f3(‘7l/) = 1. Finally, it is necessary to relate the two sets

of primaries by determining the color signals of each of the new primary colors
(Py), (P,), (P3) in terms of both primary systems. These color signal equations are

e(P,) = KA(W)t(P,) = KA(W)i(P)) (3.4-3a)
e(P,) = KA(W)L(P,) = KA(W)i(P,) (3.4-3b)
e(Py) = KA(W)t(Py) = KA(W)i(P;) (3.4-3¢)
where
1 0 ) 0
ihp = M (P = |—= {(P;) =
0 Ay(
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Matrix equations 3.4-1 to 3.4-3 may be solved jointly to obtain a relationship
between the tristimulus values of the original and new primary system:

T,(C) T,(Py) T,(P3)
T,(C) T,(Py) Ty(P3)

N T.(C) Ti(Py) Ti(P
Tl(C) _ 3( ) 3( 2) 3( 3) (3.4_4a)

T,(W) T,(Py) T,(P3)
T,(W) Ty(Py) T,(P3)
T,(W) T3(P2)  Ty(P3)

T,(P)) T,(C) T,(P3)
T,(P)) Ty(C) Ty(P3)

5 To(P)) T:(C) Ti(P
Tz(C) _ 3( 1) 3( ) 3( 3) (3.4-4b)

T,(P) T (W) T,(P3)
T,(P)) Ty(W) T,(P3)
Ty(Py) T3(W) Ts(P3)

T,(P)) T,(Py) T,(C)
T,(P)) Ty(Py) T,(C)

N To(P;) Ti(Py) TH(C
74(C) = 3(P1) T5(Py) T5(0) (3.4-40)

T\(Py) T,(Py) Ty(W)
T,(Py) Ty(Py) Ty(W)
Ty(P)) T3(Py) Ts(W)

where |T| denotes the determinant of matrix T. Equations 3.4-4 then may be written
in terms of the chromaticity coordinates #,(Py), t;(P3), t;(P3) of the new set of pri-
maries referenced to the original primary coordinate system.

With this revision,

Ty(C) my mp o myy |[|T,(C)
To(C) = | my  my  myy ||TH(O) (3.4-5)
T5(C) my my  may | |T3(0)
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where

and
Ay = T{(W)A, + Ty (W)A, + Ty(W)A 5
Ay = T (W)Ay, + To(W)Ay, + T3 (W)Ays
Ay = T (W)Aq; + Ty (W)Aqy + T3 (W)Ags
Ay = 15(P2)15(P3) = 15(P2)t5(P3)
Ay = 13(Py)1y(P3) — 1,(Py)t5(P3)
Ay = 1(P)1y(P3) — 1y(Py)t, (P3)
Ayy = 13(P)1y(P3) — 15 (P1)15(P3)
Ay = 1, (PD15(P3) — t5(P)t,(P3)
Ayy = (P (P3) — 1,(P1)ty(P3)
Ay = 4 (PD13(Py) — 13(P)1,(P2)
Ay = 5P (P) = 1) (P)15(P2)
Ay = 1,(P1)1y(P2) ~ ty(P1)1,(Py)

Thus, if the tristimulus values are known for a given set of primaries, conversion to
another set of primaries merely entails a simple linear transformation of coordinates.

3.5. COLOR SPACES

It has been shown that a color (C) can be matched by its tristimulus values T,(C),
T,(C), T4(C) for a given set of primaries. Alternatively, the color may be specified
by its chromaticity values #,(C), ¢,(C) and its luminance ¥(C). Appendix 2 presents
formulas for color coordinate conversion between tristimulus values and chromatic-
ity coordinates for various representational combinations. A third approach in speci-
fying a color is to represent the color by a linear or nonlinear invertible function of
its tristimulus or chromaticity values.
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linear and nonlinear
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colorimetric
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linear
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FIGURE 3.5-1. Relationship of color spaces.

In this section, several standard and nonstandard color spaces for the representa-
tion of color images are described. They are categorized as colorimetric, subtractive,
video or nonstandard. Figure 3.5-1 illustrates the relationship between these color
spaces. The figure also lists several example color spaces.

Natural color images, as opposed to computer-generated images, usually origi-
nate from a color scanner or a color video camera. These devices incorporate three
sensors that are spectrally sensitive to the red, green and blue portions of the light
spectrum. The color sensors typically generate red, green and blue color signals that
are linearly proportional to the amount of red, green and blue light detected by each
sensor. These signals are linearly proportional to the tristimulus values of a color at
each pixel. As indicated in Figure 3.5-1, linear RGB images are the basis for the gen-
eration of the various color space image representations.

3.5.1. Colorimetric Color Spaces

The class of colorimetric color spaces includes all linear RGB images and the stan-
dard colorimetric images derived from them by linear and nonlinear intercomponent
transformations.
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FIGURE 3.5-2. Tristimulus values of CIE spectral primaries required to match unit energy
throughout the spectrum. Red = 700 nm, green = 546.1 nm and blue = 435.8 nm.

RcG B Spectral Primary Color Coordinate System. In 1931, the CIE developed a
standard primary reference system with three monochromatic primaries at wave-
lengths: red = 700 nm; green = 546.1 nm; blue = 435.8 nm (11). The units of the tris-
timulus values are such that the tristimulus values Rq, G, B are equal when
matching an equal-energy white, called Il/luminant E, throughout the visible spectrum.
The primary system is defined by tristimulus curves of the spectral colors, as shown in
Figure 3.5-2. These curves have been obtained indirectly by experimental color-
matching experiments performed by a number of observers. The collective color-
matching response of these observers has been called the CIE Standard Observer.
Figure 3.5-3 is a chromaticity diagram for the CIE spectral coordinate system.

FIGURE 3.5-3. Chromaticity diagram for CIE spectral primary system.
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RNG By NTSC Receiver Primary Color Coordinate System. Commercial televi-
sion receivers employ a cathode ray tube with three phosphors that glow in the red,
green and blue regions of the visible spectrum. Although the phosphors of
commercial television receivers differ from manufacturer to manufacturer,it is com-
mon practice to reference them to the National Television Systems Committee
(NTSC) receiver phosphor standard (14). The standard observer data for the CIE spec-
tral primary system is related to the NTSC primary system by a pair of linear coordi-
nate conversions.

Figure 3.5-4 is a chromaticity diagram for the NTSC primary system. In this
system, the units of the tristimulus values are normalized so that the tristimulus
values are equal when matching the [lluminant C white reference. The NTSC
phosphors are not pure monochromatic sources of radiation, and hence the gamut
of colors producible by the NTSC phosphors is smaller than that available from the
spectral primaries. This fact is clearly illustrated by Figure 3.5-3, in which the
gamut of NTSC reproducible colors is plotted in the spectral primary chromaticity
diagram (11). In modern practice, the NTSC chromaticities are combined with
Hluminant D65.

RpGgBf EBU Receiver Primary Color Coordinate System. The European Broad-
cast Union (EBU) has established a receiver primary system whose chromatici-
ties are close in value to the CIE chromaticity coordinates, and the reference
white is Illuminant C (17). The EBU chromaticities are also combined with the
D65 illuminant.

RprGgrBg CCIR Receiver Primary Color Coordinate Systems. In 1990, the Inter-
national Telecommunications Union (ITU) issued its Recommendation 601, which

N.T.S.C. COLORS
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FIGURE 3.5-4. Chromaticity diagram for NTSC receiver phosphor primary system.
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specified the receiver primaries for standard resolution digital television (18). Also,
in 1990, the ITU published its Recommendation 709 for digital high-definition
television systems (19). Both standards are popularly referenced as CCIR Rec. 601
and CCIR Rec. 709, abbreviations of the former name of the standards committee,
Comité Consultatif International des Radiocommunications.

R¢G¢Bs SMPTE Receiver Primary Color Coordinate System. The Society of
Motion Picture and Television Engineers (SMPTE) has established a standard
receiver primary color coordinate system with primaries that match modern receiver
phosphors better than did the older NTSC primary system (20). In this coordinate
system, the reference white is Illuminant D65.

XYZ Color Coordinate System. In the CIE spectral primary system, the tristimulus
values required to achieve a color match are sometimes negative. The CIE has
developed a standard artificial primary coordinate system in which all tristimulus
values required to match colors are positive (4). These artificial primaries are
shown in the CIE primary chromaticity diagram of Figure 3.5-3 (11). The XYZ sys-
tem primaries have been chosen so that the Y tristimulus value is equivalent to the
luminance of the color to be matched. Figure 3.5-5 is the chromaticity diagram for
the CIE XYZ primary system referenced to equal-energy white (4). The linear trans-
formations between R-G B and XYZ are given by

FIGURE 3.5-5. Chromaticity diagram for CIE XYZ primary system.
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x| [ 049018626 0.30987954  0.19993420 |[ R¢
Y| =] 017701522  0.81232418  0.01066060 || G (3.5-1a)
z 0.00000000  0.01007720  0.98992280 || B¢
R, [ 236353918 —0.89582361  —0.46771557 || X
Ge| = | -0.51511248 142643694  0.08867553 || Y (3.5-1b)
Be 0.00524373 —0.01452082 100927709 ||

The color conversion matrices of Eq. 3.5-1 and those color conversion matrices
defined later are quoted to eight decimal places (21,22). In many instances, this quo-
tation is to a greater number of places than the original specification. The number of
places has been increased to reduce computational errors when concatenating trans-
formations between color representations.

The color conversion matrix between XYZ and any other linear RGB color space
can be computed by the following algorithm.

1. Compute the colorimetric weighting coefficients a(1), a(2), a(3) from

-1

a(l) Xp Xg Xp X/ Yw
a2)| = | Y Y6 VB 1 (3.5-2a)
0(3) i % Zp ZW/yW

where X, y;, z; are the chromaticity coordinates of the RGB primary set.
2. Compute the RGB-to-XYZ conversion matrix.

M(1, 1) M(1,2) M(1,3) Xg Xg Xglla(l)y 0 0
M2, 1) M(2,2) M23) | = |y vo ¥g|| 0 a2 o | (352b)
M@3,1) M(@3,2) M(3,3) % 2 |l 0 0 a@)

The XYZ-to-RGB conversion matrix is, of course, the matrix inverse of M. Table
3.5-1 lists the XYZ tristimulus values of several standard illuminants. The XYZ
chromaticity coordinates of the standard linear RGB color systems are presented in
Table 3.5-2.

From Egs. 3.5-1 and 3.5-2 it is possible to derive a matrix transformation
between R-G B and any linear colorimetric RGB color space. The book’s CD con-
tains a file that lists the transformation matrices (22) between the standard RGB
color coordinate systems and XYZ and UVW, defined below.
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TABLE 3.5-1. XYZ Tristimulus Values of Standard Illuminants

Iluminant X0 Yy Z
A 1.098700 1.000000 0.355900
C 0.980708 1.000000 1.182163
D50 0.964296 1.000000 0.825105
D65 0.950456 1.000000 1.089058
E 1.000000 1.000000 1.000000

TABLE 3.5-2. XYZ Chromaticity Coordinates of Standard Primaries

69

Standard X y z
CIE Rc 0.640000 0.330000 0.030000
Gc 0.300000 0.600000 0.100000
Bc 0.150000 0.06000 0.790000
NTSC Ry 0.670000 0.330000 0.000000
Gy 0.210000 0.710000 0.080000
BN 0.140000 0.080000 0.780000
SMPTE Rg 0.630000 0.340000 0.030000
Gg 0.310000 0.595000 0.095000
Bg 0.155000 0.070000 0.775000
EBU Rp 0.640000 0.330000 0.030000
Gg 0.290000 0.60000 0.110000
Bg 0.150000 0.060000 0.790000
CCIR Rp 0.640000 0.330000 0.030000
Gp 0.30000 0.600000 0.100000
Bpg 0.150000 0.060000 0.790000

UVW Uniform Chromaticity Scale Color Coordinate System. In 1960, the CIE

adopted a coordinate system, called the Uniform Chromaticity Scale (UCS), in

which, to a good approximation, equal changes in the chromaticity coordinates

result in equal, just noticeable changes in the perceived hue and saturation of a
color. The V component of the UCS coordinate system represents luminance. The
u, v chromaticity coordinates are related to the x, y chromaticity coordinates by the

relations (23).
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Figure 3.5-6 is a UCS chromaticity diagram.

(3.5-3a)

(3.5-3b)

(3.5-3¢)

(3.5-3d)

The tristimulus values of the uniform chromaticity scale coordinate system UVW
are related to the tristimulus values of the spectral coordinate primary system by

Ul [ 032679084 0.20658636 0.13328947 ||Rc|
1% 0.17701522  0.81232418  0.01066060 | |G
W 0.02042971  1.06858510  0.41098519 ||B,.
Re| | 284373542 050732308 -0.93543113 |[U
G ~0.63965541  1.16041034  0.17735107 ||V
B, 152178123 —3.04235208  2.01855417 ||W

(3.5-4a)

(3.5-4b)

FIGURE 3.5-6. Chromaticity diagram for CIE uniform chromaticity scale primary system.



COLOR SPACES 71

U*V*W#* Color Coordinate System. The U*V*W#* color coordinate system, adopted
by the CIE in 1964, is an extension of the UVW coordinate system in an attempt to
obtain a color solid for which unit shifts in luminance and chrominance are uniformly
perceptible. The U*V*W* coordinates are defined as (24)

U* = 1I3W*(u—u,) (3.5-52)
VE = 13W*(v-v,) (3.5-5b)
wr = 25(1007) "~ 17 (3.5-5¢)

where the luminance Y is measured over a scale of 0.0 to 1.0 and u, and v, are the
chromaticity coordinates of the reference illuminant.

The UVW and U*V*W#* coordinate systems were rendered obsolete in 1976 by
the introduction by the CIE of the more accurate L*a*b* and L*u*v* color coordi-
nate systems. Although depreciated by the CIE, much valuable data has been col-
lected in the UVW and U*V*W* color systems.

L*a*b* Color Coordinate System. The L*a*b* cube root color coordinate system
was developed to provide a computationally simple measure of color in agreement
with the Munsell color system (25). The color coordinates are

NV v
L = 116(Y—) ~16 for > 0.008856 (3.5-6a)
o0 o
L = 903.3Y1 for 0.0 < YX <0.008856 (3.5-6b)
o0 o
v sood Xl Jy i
o salf 2] A2 5o
v~ a0olrl X1 _flz ]
b 200_]0{)(0} f{ZOH (3.5-6d)
where
1/3
fw) = w for w > 0.008856 (3.5-6e)

fw) = 7.787(w) +0.1379  for 0.0 < w < 0.008856 (3.5-6f)
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The terms X,,, Y,,, Z,, are the tristimulus values for the reference white. Basically, L*
is correlated with brightness, a* with redness-greenness and b* with yellowness-

blueness. The inverse relationship between L*a*b* and XYZ is

ol Jrr+16 )
X = Xa_g{ = H (3.5-7a)

vl e ]
Y = Yn_g{f{yo}+5 OH (3.5-7b)

gl e ]
- afeblzl ) 5570

where

gw) = w° for w>0.20681 (3.5-7d)
g(w) = 0.1284(w—0.1379)  for 0.0<w < 0.20689 (3.5-7¢)

L*u*v* Color Coordinate System. The L*u*v* coordinate system (26), which has
evolved from the L*a*b* and the U*V*W* coordinate systems, became a CIE stan-
dard in 1976. It is defined as

Y \1/3
L* = 25(1007) —16 for L5 0.008856 (3.5-8a)
o Ya
L = 903.3% for Y1< 0.008856 (3.5-8b)
w* = 13L%(u' - u))) (3.5-8¢)
v = 13L%(v' = v)) (3.5-8d)
where
we=—3X (3.5-8¢)
X+15Y+3Z
v 2Y (3.5-8f)

T X+15Y+3Z
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and u, and v, are obtained by substitution of the tristimulus values X,,, Y,,, Z, for
the reference white. The inverse relationship is given by

x= Wy (3.5-9a)
4y
3
Y=v (”* 16) (3.5-9b)
0 25
7 = yl2-3u 200 (3.5-9¢)
4v
where
u*
W= X (3.5-9d)
13L*
V* ’
v X (3.5-9)
13L*

Figure 3.5-7 shows the linear RGB components of an NTSC receiver primary
color image. This color image is printed in the color insert. If printed properly, the
color image and its monochromatic component images will appear to be of “nor-
mal” brightness. When displayed electronically, the linear images will appear too
dark. Section 3.5.3 discusses the proper display of electronic images. Figures 3.5-8
to 3.5-10 show the XYZ, Yxy and L*a*b* components of Figure 3.5-7. Section 10.1.1
describes amplitude-scaling methods for the display of image components outside the
unit amplitude range. The amplitude range of each component is printed below each
photograph.

3.5.2. Subtractive Color Spaces

The color printing and color photographic processes (see Section 11.3) are based
on a subtractive color representation. In color printing, the linear RGB color com-
ponents are transformed to cyan (C), magenta (M) and yellow (Y) inks, which are
overlaid at each pixel on a, usually, white paper. The simplest transformation rela-
tionship is

C=10-R (3.5-10a)
M=10-G (3.5-10b)

Y=10-B (3.5-10c)
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(a) Linear R, 0.000 to 0.965

(b) Linear G, 0.000 to 1.000 (c) Linear B, 0.000 to 0.965

FIGURE 3.5-7. Linear RGB components of the dolls_ linear color image. See insert
for a color representation of this figure.

where the linear RGB components are tristimulus values over [0.0, 1.0]. The inverse
relations are

R=10-C (3.5-11a)
G=10-M (3.5-11b)
B=10-Y (3.5-11¢)

In high-quality printing systems, the RGB-to-CMY transformations, which are usu-
ally proprietary, involve color component cross-coupling and point nonlinearities.
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(a) X, 0.000 to 0.952

(b) Y, 0.000 to 0.985 (c) Z, 0.000 to 1,143
FIGURE 3.5-8. XYZ components of the dol1ls linear color image.

To achieve dark black printing without using excessive amounts of CMY inks, it
is common to add a fourth component, a black ink, called the key (K) or black com-
ponent. The black component is set proportional to the smallest of the CMY compo-
nents as computed by Eq. 3.5-10. The common RGB-to-CMYK transformation,
which is based on the undercolor removal algorithm (27), is

C=10-R-uk, (3.5-12a)
M=10-G-uk, (3.5-12b)
Y = 1.0-B-ukK, (3.5-12¢)

K = bK, (3.5-12d)
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(a) Y, 0.000 to 0.965

(b) x, 0.140 to 0.670 (¢) y, 0.080 to 0.710

FIGURE 3.5-9. Yxy components of the dolls linear color image.

where

K, = MIN{1.0-R, 1.0~ G, 1.0 B} (3.5-12¢)

and 0.0<u<1.0 is the undercolor removal factor and 0.0 <5 <1.0 is the blackness
factor. Figure 3.5-11 presents the CMY components of the color image of Figure 3.5-7.

3.5.3. Video Color Spaces

The red, green and blue signals from video camera sensors typically are linearly pro-
portional to the light striking each sensor. However, the light generated by cathode
tube displays is approximately proportional to the display amplitude drive signals
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(a) L*, —16.000 to 99.434

(b) a*, -55.928 to 69.291 (c) b*, —65.224 t0 90.171

FIGURE 3.5-10. L*a*b* components of the dolls_linear color image.

raised to a power in the range 2.0 to 3.0 (28). To obtain a good-quality display, it is
necessary to compensate for this point nonlinearity. The compensation process, called
gamma correction, involves passing the camera sensor signals through a point nonlin-
earity with a power, typically, of about 0.45. In television systems, to reduce receiver
cost, gamma correction is performed at the television camera rather than at the
receiver. A linear RGB image that has been gamma corrected is called a gamma RGB
image. Liquid crystal displays are reasonably linear in the sense that the light gener-
ated is approximately proportional to the display amplitude drive signal. But because
LCDs are used in lieu of CRTs in many applications, they usually employ circuitry to
compensate for the gamma correction at the sensor.
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(a) C, 0.0035 to 1.000

(b) M, 0.000 to 1.000 (c) Y, 0.0035 to 1.000

FIGURE 3.5-11. CMY components of the dol1ls linear color image.

In high-precision applications, gamma correction follows a linear law for low-
amplitude components and a power law for high-amplitude components according
to the relations (22)

K = ¢, K7+ for K= b (3.5-13a)

K = ¢,k for 0.0<K<b (3.5-13b)

where K denotes a linear RGB component and K is the gamma-corrected compo-
nent. The constants ¢;, and the breakpoint b are specified in Table 3.5-3 for the
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general case and for conversion to the SMPTE, CCIR and CIE lightness compo-
nents. Figure 3.5-12 is a plot of the gamma correction curve for the CCIR Rec.

709 primaries.

TABLE 3.5-3. Gamma Correction Constants

General SMPTE CCIR CIEL*
] 1.00 1.1115 1.099 116.0
c 0.45 0.45 0.45 0.3333
c3 0.00 -0.1115 —0.099 -16.0
c4 0.00 4.0 4.5 903.3
b 0.00 0.0228 0.018 0.008856
The inverse gamma correction relation is
k —cy 1/¢, 3
k = for K=c,b (3.5-14a)
€1
k=X for 0.0<K<c,b (3.5-14b)
Cq
Reference white 1
Gamma 1/0.45
Toe slope 4.5
Video signal /

{voltage or code) ’

Reference black 0 }
Toe break 0.018

iy

g

Toe intercept =0.099 -

Light intensity —

FIGURE 3.5-12. Gamma correction curve for the CCIR Rec. 709 primaries.
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(a) Gamma R, 0.000 to 0.984

(b) Gamma G, 0.000 to 1.000 (c) Gamma B, 0.000 to 0.984

FIGURE 3.5-13. Gamma RGB components of the dol1ls_ gamma color image. See insert
for a color representation of this figure.

Figure 3.5-13 shows the gamma RGB components of the color image of Figure 3.5-7.
The gamma color image is printed in the color insert. The gamma components have
been printed as if they were linear components to illustrate the effects of the point
transformation. When viewed on an electronic display, the gamma RGB color image
will appear to be of “normal” brightness.

YIQ NTSC Transmission Color Coordinate System. In the development of the
color television system in the United States, NTSC formulated a color coordinate
system for transmission composed of three values, Y, I, Q (14). The Y value,
called luma, is proportional to the gamma-corrected luminance of a color. The
other two components, / and Q, called chroma, jointly describe the hue and saturation
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attributes of an image. The reasons for transmitting the Y/Q components rather than
the gamma-corrected RyGyBy components directly from a color camera were two
fold: The Y signal alone could be used with existing monochrome receivers to dis-
play monochrome images; and it was found possible to limit the spatial bandwidth
of the 7 and Q signals without noticeable image degradation. As a result of the latter
property, a clever analog modulation scheme was developed such that the bandwidth
of a color television carrier could be restricted to the same bandwidth as a mono-
chrome carrier.
The YIQ transformations for an Illuminant C reference white are given by

Y 0.29889531  0.58662247 0.11448223 | |Ry
=10.59597799 —0.27417610 —0.32180189 | |Gy (3.5-15a)
0 021147017 —0.52261711  0.31114694 | | B,

Ry| | 1.00000000 0.95608445 0.62088850 | | ¥
Gy| = | 1.00000000 -0.27137664 —0.64860590 | | I (3.5-15b)
By| |1.00000000 -1.10561724 1.70250126 | |Q

where the tilde denotes that the component has been gamma corrected.
Figure 3.5-14 presents the Y/Q components of the gamma color image of Figure
3.5-13.

YUV EBU Transmission Color Coordinate System. In the PAL and SECAM
color television systems (29) used in many countries, the luma Y and two color
differences,

v =2 (3.5-16a)
y=Re ¥ (3.5-16b)
1.14

are used as transmission coordinates, where Ry and By are the gamma-corrected
EBU red and blue components, respectively. The YUV coordinate system was ini-
tially proposed as the NTSC transmission standard but was later replaced by the YIQ
system because it was found (4) that the 7 and Q signals could be reduced in band-
width to a greater degree than the U and V signals for an equal level of visual quality.
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(a) ¥, 0.000 to 0.994

(b) 1, -0.276 10 0.347 (c) Q =0.147 t0 0.169

FIGURE 3.5-14. YIQ components of the gamma corrected dol1ls_gamma color image.

The I and Q signals are related to the U and V signals by a simple rotation of coordi-
nates in color space:

I = -Usin33° + Vcos33° (3.5-17a)

Q = Uco0s33° + Vsin33° (3.5-17b)

It should be noted that the U and V components of the YUV video color space are not
equivalent to the U and V components of the UVW uniform chromaticity system.

YCbCr CCIR Rec. 601 Transmission Color Coordinate System. The CCIR Rec.
601 color coordinate system YCbCr is defined for the transmission of luma and
chroma components coded in the integer range O to 255. The YCbCr transformations
for unit range components are defined as (28)
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Y 0.29900000  0.58700000  0.11400000| | R
Cb | = |-0.16873600 —0.33126400  0.50000000| | G (3.5-18a)
Cr 0.50000000 -0.4186680 —0.08131200| | By

Rg 1.00000000 —0.0009264  1.40168676 || Y
G | =[1.00000000 -0.34369538 -0.71416904 | |Cb (3.5-18b)
Bs 1.00000000  1.77216042  0.00099022 | |Cr

where the tilde denotes that the component has been gamma corrected.

Photo YCC Color Coordinate System. Eastman Kodak company has developed an
image storage system, called PhotoCD, in which a photographic negative is scanned,
converted to a luma/chroma format similar to Rec. 601 YCbCr, and recorded in a pro-
prietary compressed form on a compact disk. The PhotoYCC format and its associ-
ated RGB display format have become defacto standards. PhotoYCC employs the
CCIR Rec. 709 primaries for scanning. The conversion to YCC is defined as
(27,28,30)

Y 0299  0.587 0.114 ][ Ropo
C,| = |-0.299 —0.587 0.500 || G0 (3.5-192)
C, 0.500 —0.587 0.114 || Bygo

Transformation from PhotoCD components for display is not an exact inverse of
Eq. 3.5-19a, in order to preserve the extended dynamic range of film images. The
YC,Cy-to-RpGpBp display components is given by

R, 0.969 0.000 1.000 || ¥
Gp| = | 0969 -0.194 -0.509 || C, (3.5-19b)
By 0.969 1.000 0.000 || C,

3.5.4. Nonstandard Color Spaces

Several nonstandard color spaces used for image processing applications are described
in this section.
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IHS Color Coordinate System. The IHS coordinate system (31) has been used
within the image processing community as a quantitative means of specifying the
intensity, hue and saturation of a color. It is defined by the relations

! 111 R
3 3 3
-1 -1 2
V.| = - -~ [l G (35-203.)
! Jo 6 6
L oLy
V2] | 6 e JLB ]
VZ
H = arctan{ —= (3.5-20b)
Vi
5=V evh)” (3.5-20¢)

By this definition, the color blue is the zero reference for hue. The inverse relation-
ship is

V= Scos{H} (3.5-21a)

V,= Ssin{H} (3.5-21b)

R 1__.“/6161

6 2
= Jo -6 (3.5-21c)
G I
16
B L0 ]y,

Figure 3.5-15 shows the /HS components of the gamma RGB image of Figure
3.5-13.

Karhunen—Loeve Color Coordinate System. Typically, the R, G and B tristimulus
values of a color image are highly correlated with one another (32). In the develop-
ment of efficient quantization, coding and processing techniques for color images,
it is often desirable to work with components that are uncorrelated. If the second-
order moments of the RGB tristimulus values are known, or at least estimable, it is
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(a) 1, 0.000 to 0.989

(b) H, -3.136 to 3.142 () S, 0.000 to 0.476

FIGURE 3.5-15. IHS components of the dol1ls gamma color image.

possible to derive an orthogonal coordinate system, in which the components are
uncorrelated, by a Karhunen-Loeve (K-L) transformation of the RGB tristimulus
values. The K-L color transform is defined as

(3.5-22a)

>
1l
S
=
5
0~
S
N
Q
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R my my o mgy | |K
G| = My My, Mz K2 (3.5-22b)
B myz o Mmoo oy | |Ky

where the transformation matrix with general term m,; composed of the eigenvec-
tors of the RGB covariance matrix with general term u;; . The transformation matrix
satisfies the relation

Myp My Mz || Uy Uy Mgy | Mg Ty Pl A0
My My Moy || Uy Uyy Uy || Mgy My My | =0 2
M3y M3y Mzz || Uz Up3 Uzz || Mgz Tp3 Mgy 0 0 2
(3.5-23)
where A, A,, A, are the eigenvalues of the covariance matrix and
u, = E{(R-R)’} (3.5-24a)
1y = E{(G-G)'} (3.5-24b)
uy = E{(B-B)"} (3.5-24c)
up, = E{(R-R)(G-G)} (3.5-244d)
u;; = E{(R-R)(B-B)} (3.5-24e)
uy; = E{(G-G)(B-B)} (3.5-24f)

In Eq. 3.5-23, E{-} is the expectation operator and the overbar denotes the mean
value of a random variable.

Retinal Cone Color Coordinate System. As indicated in Chapter 2, in the discus-
sion of models of the human visual system for color vision, indirect measurements
of the spectral sensitivities s,(A), s,(A), s5(A) have been made for the three types of
retinal cones. It has been found that these spectral sensitivity functions can be lin-
early related to spectral tristimulus values established by colorimetric experimenta-
tion. Hence a set of cone signals T, T,, T3 may be regarded as tristimulus values in
a retinal cone color coordinate system. The tristimulus values of the retinal cone
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color coordinate system are related to the XYZ system by the coordinate conversion
matrix (33)

T, 0.000000  1.000000 0.000000 | |X
T,| = [-0.460000 1359000 0.101000||Y (3.5-25)
T, 0.000000  0.000000 1.000000 | | Z
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PART 2

DIGITAL IMAGE
CHARACTERIZATION

Digital image processing is based on the conversion of a continuous image field to
equivalent digital form. This part of the book considers the image sampling and
quantization processes that perform the analog image to digital image conversion.
The inverse operation of producing continuous image displays from digital image
arrays is also analyzed.






IMAGE SAMPLING AND
RECONSTRUCTION

In digital image processing systems, one usually deals with arrays of numbers
obtained by spatially sampling points of a physical image. After processing, another
array of numbers is produced, and these numbers are then used to reconstruct a con-
tinuous image for viewing. Image samples nominally represent some physical mea-
surements of a continuous image field, for example, measurements of the image
intensity or photographic density. Measurement uncertainties exist in any physical
measurement apparatus. It is important to be able to model these measurement
errors in order to specify the validity of the measurements and to design processes
for compensation of the measurement errors. Also, it is often not possible to mea-
sure an image field directly. Instead, measurements are made of some function
related to the desired image field, and this function is then inverted to obtain the
desired image field. Inversion operations of this nature are discussed in the sections
on image restoration. In this chapter, the image sampling and reconstruction process
is considered for both theoretically exact and practical systems.

4.1. IMAGE SAMPLING AND RECONSTRUCTION CONCEPTS

In the design and analysis of image sampling and reconstruction systems, input images
are usually regarded as deterministic fields (1-5). However, in some situations it is
advantageous to consider the input to an image processing system, especially a noise
input, as a sample of a two-dimensional random process (5-7). Both viewpoints are
developed here for the analysis of image sampling and reconstruction methods.

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.
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4.1.1. Sampling Deterministic Fields

Let F/(x,y) denote a continuous, infinite-extent, ideal image field representing the
luminance, photographic density, or some desired parameter of a physical image. In
a perfect image sampling system, spatial samples of the ideal image would, in effect,
be obtained by multiplying the ideal image by a spatial sampling function

oo

Seey)y =% Y 8(x—jAxy—k Ay) (4.1-1)
j= oo k=

composed of an infinite array of Dirac delta functions arranged in a grid of spacing
(Ax, Ay) as shown in Figure 4.1-1. The sampled image is then represented as

Fp(x,y) = Fi(x,))S(x,y) = Y Y Fj(jAx, kAy)d(x—jAx,y—kAy)
j=e k=

(4.1-2)

where it is observed that F;(x,y) may be brought inside the summation and evalu-
ated only at the sample points (j Ax, k Ay) . It is convenient, for purposes of analysis,
to consider the spatial frequency domain representation #,(o,, ®,) of the sampled
image obtained by taking the continuous two-dimensional Fourier transform of the
sampled image. Thus

Fp(0, 0) = J_ZJ_ZFP(X’ y)exp{-i(wx+oy)}dxdy (4.1-3)

)
!

VY
YV avav4

e

FIGURE 4.1-1. Dirac delta function sampling array.

2

i

727
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By the Fourier transform convolution theorem, the Fourier transform of the sampled
image can be expressed as the convolution of the Fourier transforms of the ideal
image #/(o, o,) and the sampling function S(w,, ) as expressed by

Tp(0y, 0)) = 4—15('1}(% o,) ®S(®,, 0)) (4.1-4)
T

The two-dimensional Fourier transform of the spatial sampling function is an infi-
nite array of Dirac delta functions in the spatial frequency domain as given by
(4,p.22)

oo

2 oo
S(0, 0)) = AtnAy 2 2 3o, -j 0,0 ko) (4.1-5)

j=—co k=-oo

where o, = 2n/Ax and o, = 2n/Ay represent the Fourier domain sampling fre-
quencies. It will be assumed that the spectrum of the ideal image is bandlimited to
some bounds such that #(o,, »,) = 0 for lo,|>o,,. and ‘my‘ > o, . Performing the
convolution of Eq. 4.1-4 yields

_ L e
Tp(p o) = o= [ 7 Ao - o, -)

X 2 2 d(w,—j 0,0 ko dedp (4.1-6)

j=—co k=—oo

Upon changing the order of summation and integration and invoking the sifting
property of the delta function, the sampled image spectrum becomes

1 - .
Fp(@, 0) = Ay z Yy oo, 0 ko) (4.1-7)

j=—eo k=—oo

As can be seen from Figure 4.1-2, the spectrum of the sampled image consists of the
spectrum of the ideal image infinitely repeated over the frequency plane in a grid of
resolution (2m/Ax, 2n/Ay). It should be noted that if Ax and Ay are chosen too
large with respect to the spatial frequency limits of #,(®,, ®,) , the individual spec-
tra will overlap.

A continuous image field may be obtained from the image samples of F,(x,y) by
linear spatial interpolation or by linear spatial filtering of the sampled image. Let
R(x,y) denote the continuous domain impulse response of an interpolation filter and
R(w,, w,) represent its transfer function.
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wy

wx

(a) Original image

AX
(b) Sampled image
FIGURE 4.1-2. Typical sampled image spectra.

Then the reconstructed image is obtained by a convolution of the samples with the
reconstruction filter impulse response. The reconstructed image then becomes

Fr(x,y) = Fp(x,y) ®R(x, y) (4.1-8)

Upon substituting for F,(x,y) from Eq. 4.1-2 and performing the convolution, one
obtains

Fp(x,y) = z z F(jAx, k AY)R(x —j Ax, y —k Ay) 4.1-9)

j=—co k=—co

Thus it is seen that the impulse response function R(x, y) acts as a two-dimensional
interpolation waveform for the image samples. The spatial frequency spectrum of
the reconstructed image obtained from Eq. 4.1-8 is equal to the product of the recon-
struction filter transform and the spectrum of the sampled image,

Fr(®,, (oy) = Pp(@, (oy)ili((ox, (oy) (4.1-10)

or, from Eq. 4.1-7,
1 A .
Tr(0, ®) = Ax—Ayi’i(wx, wy)vz Y Hlo-jo,0-ko)

j=—oo k=—co

4.1-11)
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Itis clear from Eq. 4.1-11 that if there is no spectrum overlap and if R(w,, w,) filters
out all spectra for j, k#0, the spectrum of the reconstructed image can be made
equal to the spectrum of the ideal image, and therefore the images themselves can be
made identical. The first condition is met for a bandlimited image if the sampling
period is chosen such that the rectangular region bounded by the image cutoff
frequencies (o, ., w,,) lies within a rectangular region defined by one-half the sam-

xc’

pling frequency. Hence

(DXS o )
0, < X O, < T‘ (4.1-12a)
or, equivalently,
Axr< -~ Ay<s L 4.1-12b
* Oy ’ mya ( )

In physical terms, the sampling period must be equal to or smaller than one-half the
period of the finest detail within the image. This sampling condition is equivalent to
the one-dimensional sampling theorem constraint for time-varying signals that
requires a time-varying signal to be sampled at a rate of at least twice its highest-fre-
quency component. If equality holds in Eq. 4.1-12, the image is said to be sampled
at its Nyquist rate; if Ax and Ay are smaller than required by the Nyquist criterion,
the image is called oversampled; and if the opposite case holds, the image is under-
sampled.

If the original image is sampled at a spatial rate sufficient to prevent spectral
overlap in the sampled image, exact reconstruction of the ideal image can be
achieved by spatial filtering the samples with an appropriate filter. For example, as
shown in Figure 4.1-3, a filter with a transfer function of the form

R0, 0) = K for jo,| <0, and |0 |<®,, (4.1-13a)

R, ®) =0 otherwise (4.1-13b)

where K is a scaling constant, satisfies the condition of exact reconstruction if
o,, >0, and Dy >0y The point-spread function or impulse response of this recon-
struction filter is

KmewyL sin{w,;x} sin{ooyLy}

R(x,y) = 4.1-14)

2 ® X Oy
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-

t"‘\'5/2

b {8

Wye

7

(a) Rectangular reconstruction filter

Wy

“xc Wy /2

0

(&) Circular reconstruction filter

FIGURE 4.1-3. Sampled image reconstruction filters.

With this filter, an image is reconstructed with an infinite sum of (sin6)/6 func-
tions, called sinc functions. Another type of reconstruction filter that could be
employed is the cylindrical filter with a transfer function

R0, 0) = K for /m)zc+u)§ < o, (4.1-15a)
Ro, 0,) =0 otherwise (4.1-15b)

provided that mé > mzc + mic . The impulse response for this filter is
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Jl{u)OA/x2+y2}

R(x,y) = 2nm,K (4.1-16)

where J,{-} is a first-order Bessel function. There are a number of reconstruction
filters or, equivalently, interpolation waveforms, that could be employed to provide
perfect image reconstruction. In practice, however, it is often difficult to implement
optimum reconstruction filters for imaging systems.

4.1.2. Sampling Random Image Fields

In the previous discussion of image sampling and reconstruction, the ideal input
image field has been considered to be a deterministic function. It has been shown
that if the Fourier transform of the ideal image is bandlimited, then discrete image
samples taken at the Nyquist rate are sufficient to reconstruct an exact replica of the
ideal image with proper sample interpolation. It will now be shown that similar
results hold for sampling two-dimensional random fields.

Let F,(x,y) denote a continuous two-dimensional stationary random process
with known mean n F, and autocorrelation function

Rp(t.1)) = E{F(x}, y)F7 (x5 9} 4.1-17)

where 1, = x;-x, and 1, = y, -y,. This process is spatially sampled by a Dirac
sampling array yielding

Fpx,y) = Fi(x,y)S(x,y) = Fi(x,y) Y Y 8(x—j Ax,y -k Ay)

jmmeo k==
(4.1-18)

The autocorrelation of the sampled process is then
Rp (T,.7)) = E{Fp(x},y)) Fp (x5 ¥,)} (4.1-19)

E{FI(XI, yl)F}k(xz, yz)}S(Xp yl)S(xz, ¥s)

The first term on the right-hand side of Eq. 4.1-19 is the autocorrelation of the
stationary ideal image field. It should be observed that the product of the two Dirac
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sampling functions on the right-hand side of Eq. 4.1-19 is itself a Dirac sampling
function of the form

S(x1, y)S(x5, ¥5) = S(x; —xp, ¥ =¥,) = S(1,, Ty) (4.1-20)

Hence the sampled random field is also stationary with an autocorrelation function

Rp (T, 1)) = Rp (T, 7)8(1,, T)) (4.1-21)

Taking the two-dimensional Fourier transform of Eq. 4.1-21 yields the power spec-
trum of the sampled random field. By the Fourier transform convolution theorem

Wy (0, 0,) = (W (0,,0,) B0, 0,) (4.1-22)
4n

where WFI((DX’ o,) and ‘WFP(wx, o,) represent the power spectral densities of the
ideal image and sampled ideal image, respectively, and $(o,, ®,) is the Fourier
transform of the Dirac sampling array. Then, by the derivation leading to Eq. 4.1-7,
it is found that the spectrum of the sampled field can be written as

oo

1 c .
WFP((DX, o) = Ay 2 Z ‘VVFI((DX —joge-ko)  (4.1-23)

j=—oo k=—oo

Thus the sampled image power spectrum is composed of the power spectrum of the
continuous ideal image field replicated over the spatial frequency domain at integer
multiples of the sampling spatial frequency (2n/Ax, 2n/Ay) . If the power spectrum
of the continuous ideal image field is bandlimited such that ‘VVFI((DX, my) =0 for
o,/ >w,. and o[>0, where o, and are ®,. cutoff frequencies, the individual
spectra of Eq. 4.1-23 will not overlap if the spatial sampling periods are chosen such
that Ax<n/®,, and Ay <n/o,, . A continuous random field Fp(x, y) may be recon-
structed from samples of the random ideal image field by the interpolation formula

Fr(x,y) = z Z F (jAx, k Ay)R(x—j Ax,y —k Ay) (4.1-24)
j= e k=

where R(x, y) is the deterministic interpolation function. The reconstructed field and
the ideal image field can be made equivalent in the mean-square sense (5, p. 284),
that is,

E{|Fy(x,y) - Fglx. )’} = 0 (4.1-25)

if the Nyquist sampling criteria are met and if suitable interpolation functions, such
as the sinc function or Bessel function of Eqgs. 4.1-14 and 4.1-16, are utilized.
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FIGURE 4.1-4. Spectra of a sampled noisy image.

The preceding results are directly applicable to the practical problem of sampling
a deterministic image field plus additive noise, which is modeled as a random field.
Figure 4.1-4 shows the spectrum of a sampled noisy image. This sketch indicates a
significant potential problem. The spectrum of the noise may be wider than the ideal
image spectrum, and if the noise process is undersampled, its tails will overlap into
the passband of the image reconstruction filter, leading to additional noise artifacts.
A solution to this problem is to prefilter the noisy image before sampling to reduce
the noise bandwidth.

4.2. MONOCHROME IMAGE SAMPLING SYSTEMS

In a physical monochrome image sampling system, the sampling array will be of
finite extent, the sampling pulses will be of finite width, and the image may be
undersampled. The consequences of nonideal sampling are explored next.

As a basis for the discussion, Figure 4.2-1 illustrates a generic optical image
scanning system. In operation, a narrow light beam is scanned directly across a pos-
itive monochrome photographic transparency of an ideal image. The light passing
through the transparency is collected by a condenser lens and is directed toward the
surface of a photo detector. The electrical output of the photo detector is integrated
over the time period during which the light beam strikes a resolution cell.
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TRANSPARENCY CONDENSER LENS
F (x,y)

FIGURE 4.2-1. Optical image scanning system.

In the analysis, it will be assumed that the sampling is noise-free. The results
developed in Section 4.1 for sampling noisy images can be combined with the
results developed in this section quite readily.

4.2.1. Sampling Pulse Effects

Under the assumptions stated above, the sampled image function is given by

Fp(x,y) = F)(x,y)S(x, y) (4.2-1)
where the sampling array
J K
Stoy) = Y Y Pl-jAxy-k Ay (4.22)
j=-J k=-K

is composed of (2J + 1)(2K + 1) identical pulses P(x, y) arranged in a grid of spac-
ing Ax,Ay. The symmetrical limits on the summation are chosen for notational
simplicity. The sampling pulses are assumed scaled such that

JiJ:OP(x, y)dxdy=1 (4.2-3)

For purposes of analysis, the sampling function may be assumed to be generated by
a finite array of Dirac delta functions D (x,y) passing through a linear filter with
impulse response P(x, y). Thus

S(x,y) = Dy(x,y) ®@P(x,y) 4.2-4)



MONOCHROME IMAGE SAMPLING SYSTEMS 101

where
J K

Dy(x,y) = Z z d(x—j Ax,y —k Ay) (4.2-5)
j=-7 k=-K

Combining Eqgs. 4.2-1 and 4.2-2 results in an expression for the sampled image
function,

J K
Fpry) = ¥ Y FjAxkAy)P(x—j Axy -k Ay) (4.2-6)
j=-J k=-K

The spectrum of the sampled image function is given by

T, ) = 4—‘;(7,(% 0,) B1D,(0, 0) (0, 0)]) (4.2-7)
'

where P(o,, ©,) is the Fourier transform of P(x,y). The Fourier transform of the
truncated sampling array is found to be (5, p. 105)

sin{ 0, (J+1) Ax}sin{m},(K+ HAy }

Prlop 0) = — e AT sin{o, Ay/2} (4.2-8)

Figure 4.2-2 depicts Dp(®,, o)) . In the limit as J and K become large, the right-
hand side of Eq. 4.2-7 becomes an array of Dirac delta functions.

0,(X,0)
-JAx -Ax O Ax JAx
40'7(W,( ,0)

2m
(2J +1)Ax

0 27/0x

FIGURE 4.2-2. Truncated sampling train and its Fourier spectrum.
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In an image reconstruction system, an image is reconstructed by interpolation of
its samples. Ideal interpolation waveforms such as the sinc function of Eq. 4.1-14 or
the Bessel function of Eq. 4.1-16 generally extend over the entire image field. If the
sampling array is truncated, the reconstructed image will be in error near its bound-
ary because the tails of the interpolation waveforms will be truncated in the vicinity
of the boundary (8,9). However, the error is usually negligibly small at distances of
about 8 to 10 Nyquist samples or greater from the boundary.

The actual numerical samples of an image are obtained by a spatial integration of
F(x,y) over some finite resolution cell. In the scanning system of Figure 4.2-1, the
integration is inherently performed on the photo detector surface. The image sample
value of the resolution cell (j, k) may then be expressed as

JAX+A, kAy+A,

'[ F(x,y))P(x—jAx,y—k Ay)dxdy  (4.2-9)

F.(jAx, kAy) =
sU y) '[ KAy-A,

jAx—-A,

where A, and A, denote the maximum dimensions of the resolution cell. It is
assumed that only one sample pulse exists during the integration time of the detec-
tor. If this assumption is not valid, consideration must be given to the difficult prob-
lem of sample crosstalk. In the sampling system under discussion, the width of the
resolution cell may be larger than the sample spacing. Thus the model provides for
sequentially overlapped samples in time.

By a simple change of variables, Eq. 4.2-9 may be rewritten as

Fg(jAx kAy) = jAA IAA Fy(j Ax— o, kAy—B)P(-o, —B)dxdy (4.2-10)
Because only a single sampling pulse is assumed to occur during the integration
period, the limits of Eq. 4.2-10 can be extended infinitely. In this formulation, Eq.
4.2-10 is recognized to be equivalent to a convolution of the ideal continuous image
F,(x,y) with an impulse response function P(-x, —y) with reversed coordinates, fol-
lowed by sampling over a finite area with Dirac delta functions. Thus, neglecting the

effects of the finite size of the sampling array, the model for finite extent pulse sam-
pling becomes

Fo(j Ax, k Ay) = [Fy(x,y) ®P(—x,—y)]8(x —j Ax, y —k Ay) 4.2-11)

In most sampling systems, the sampling pulse is symmetric, so that P(-x, —y) = P(x, y).

Equation 4.2-11 provides a simple relation that is useful in assessing the effect of
finite extent pulse sampling. If the ideal image is bandlimited and A, and A, satisfy
the Nyquist criterion, the finite extent of the sample pulse represents an equivalent
linear spatial degradation (an image blur) that occurs before ideal sampling. Part 4
considers methods of compensating for this degradation. A finite-extent sampling
pulse is not always a detriment, however. Consider the situation in which the ideal
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image is insufficiently bandlimited so that it is undersampled. The finite-extent
pulse, in effect, provides a low-pass filtering of the ideal image, which, in turn,
serves to limit its spatial frequency content, and hence to minimize aliasing error.

4.2.2. Aliasing Effects

To achieve perfect image reconstruction in a sampled imaging system, it is neces-
sary to bandlimit the image to be sampled, spatially sample the image at the Nyquist
or higher rate, and properly interpolate the image samples. Sample interpolation is
considered in the next section; an analysis is presented here of the effect of under-
sampling an image.

If there is spectral overlap resulting from undersampling, as indicated by the
shaded regions in Figure 4.2-3, spurious spatial frequency components will be intro-
duced into the reconstruction. The effect is called an aliasing error (10,11). Aliasing
effects in an actual image are shown in Figure 4.2-4. Spatial undersampling of the
image creates artificial low-spatial-frequency components in the reconstruction. In
the field of optics, aliasing errors are called moiré patterns.

From Eq. 4.1-7 the spectrum of a sampled image can be written in the form

Fo(0, ®,) = A%Ay[fl(m"’ )+ Ty(0, ®)] (4.2-12)

where #(o,, o) represents the spectrum of the original image sampled at period
(Ax, Ay) .

{ i Wy ; !
| | |
tis————*—A~+————+~——-- o — A — = — — -
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I ! I
I |
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— Wyg ll_ t -+ |
| - o
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0 wy
_LwYS ___4I_ -
|
|
S N I
Wy T T T T |
|
P E VU g
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| | ll II | |
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FIGURE 4.2-3. Spectra of undersampled two-dimensional function.
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(a) Original image

(b) Sampled image

FIGURE 4.2-4. Example of aliasing error in a sampled image.
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The term

_1 - - .
“nn 2 X Aeciego ko)  (42:13)

j=—co k=—oo

Topl®, ©)

for j#0 and k#0 describes the spectrum of the higher-order components of the
sampled image repeated over spatial frequencies o, = 2n/Ax and o, = 2n/Ay. If
there were no spectral foldover, optimal interpolation of the sampled image
components could be obtained by passing the sampled image through a zonal low-
pass filter defined by

R, 0,) = K for jo,|<0, /2 and o <0, /2 (4.2-142)

Ro,0) =0 otherwise (4.2-14Db)

where K is a scaling constant.

Applying this interpolation strategy to an undersampled image yields a recon-
structed image field

Fp(x,y) = Fi(x,y) +A(x, ) (4.2-15)
where
1 (0,2 /2 )
A(x,y) = = L%/zjimw/z Fo(0,, ©,) exp{i(0x + 0 y)}do, do, (4.2-16)

represents the aliasing error artifact in the reconstructed image. The factor K has
absorbed the amplitude scaling factors. Figure 4.2-5 shows the reconstructed imag-
espectrum that illustrates the spectral foldover in the zonal low-pass filter passband.
The aliasing error component of Eq. 4.2-16 can be reduced substantially by low-pass
filtering before sampling to attenuate the spectral foldover.

Fi (wy,0)

dlwy,0)
Flw,,0) “x

AMPLITUDE

1 T
Wys Wys SPATIAL FREQUENCY

2
FIGURE 4.2-5. Reconstructed image spectrum.
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F.(X,Y) PRE—-SAMPLING | ¢ (X,Y) F_{X,Y) RECONSTRUCTION F_(X,Y)
1 FILTER [¢] P FILTER
P wy,wy) R (wy,w,)
DT(X,Y)

FIGURE 4.2-6. Model for analysis of aliasing effect.

Figure 4.2-6 shows a model for the quantitative analysis of aliasing effects. In
this model, the ideal image F,(x,y) is assumed to be a sample of a two-dimensional
random process with known power-spectral density ‘VVFI((DX, ,) . The ideal image
is linearly filtered by a presampling spatial filter with a transfer function #{(w,, o).
This filter is assumed to be a low-pass type of filter with a smooth attenuation of
high spatial frequencies (i.e., not a zonal low-pass filter with a sharp cutoff). The fil-
tered image is then spatially sampled by an ideal Dirac delta function sampler at a
resolution Ax, Ay. Next, a reconstruction filter interpolates the image samples to pro-
duce a replica of the ideal image. From Eq. 1.4-27, the power spectral density at the
presampling filter output is found to be

Wy (0, 0,) = [H(0, 0)] W, (0, ) (4.2-17)
and the Fourier spectrum of the sampled image field is
. o

Ay z Z W (0, O, 0~k o) (4.2-18)

j=—co k=—oco

We (0, ®) =

Figure 4.2-7 shows the sampled image power spectral density and the foldover alias-
ing spectral density from the first sideband with and without presampling low-pass
filtering.

It is desirable to isolate the undersampling effect from the effect of improper
reconstruction. Therefore, assume for this analysis that the reconstruction filter
R(w,, o) is an optimal filter of the form given in Eq. 4.2-14. The energy passing
through the reconstruction filter for j = k = 0 is then

o,/2 o./2

2
Eg = -[-mm/z f_%/z We (0, 0)|H(o, 0,)|" do, do, (4.2-19)

Ideally, the presampling filter should be a low-pass zonal filter with a transfer func-
tion identical to that of the reconstruction filter as given by Eq. 4.2-14. In this case,
the sampled image energy would assume the maximum value

®,/2 /2

ERsz

_con/zjl_mw/z WFI((DX, (Dy) d(l)xd(x)y (4.2-20)
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FIGURE 4.2-7. Effect of presampling filtering on a sampled image.

Image resolution degradation resulting from the presampling filter may then be mea-
sured by the ratio

£, = —RM__R 4.2-21)

The aliasing error in a sampled image system is generally measured in terms of
the energy, from higher-order sidebands, that folds over into the passband of the
reconstruction filter. Assume, for simplicity, that the sampling rate is sufficient so
that the spectral foldover from spectra centered at (+j, /2, ko, /2) is negligible
for j>2 and k>2. The total aliasing error energy, as indicated by the doubly cross-
hatched region of Figure 4.2-7, is then

E, = E,-Ep (4.2-22)
where

E, = J':J'_‘: Wp (0, 0,)|H(o, my)‘2 do, do, (4.2-23)

denotes the energy of the output of the presampling filter. The aliasing error is
defined as (10)

T, = A (4.2-24)
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Aliasing error can be reduced by attenuating high spatial frequencies of F,(x, y)
with the presampling filter. However, any attenuation within the passband of the
reconstruction filter represents a loss of resolution of the sampled image. As a result,
there is a trade-off between sampled image resolution and aliasing error.

Consideration is now given to the aliasing error versus resolution performance of
several practical types of presampling filters. Perhaps the simplest means of spa-
tially filtering an image formed by incoherent light is to pass the image through a
lens with a restricted aperture. Spatial filtering can then be achieved by controlling
the degree of lens misfocus. Figure 11.2-2 is a plot of the optical transfer function of
a circular lens as a function of the degree of lens misfocus. Even a perfectly focused
lens produces some blurring because of the diffraction limit of its aperture. The
transfer function of a diffraction-limited circular lens of diameter d is given by
(12, p. 83)

2
Hw) = g{a cos{ﬁ}—ﬁ 1—(2) } for0<w<n, (4.2-25a)
n 0, 0,
Hw) =0 for || > o, (4.2-25b)

where o, = nd/R and R is the distance from the lens to the focal plane. In Section
4.2.1, it was noted that sampling with a finite-extent sampling pulse is equivalent to
ideal sampling of an image that has been passed through a spatial filter whose
impulse response is equal to the pulse shape of the sampling pulse with reversed
coordinates. Thus the sampling pulse may be utilized to perform presampling filter-
ing. A common pulse shape is the rectangular pulse

1 T

P(x,y) = — for |x, y| < = (4.2-26a)
T2 2

P(x,y) = 0 for |x, )] >§ (4.2-26b)

obtained with an incoherent light imaging system of a scanning microdensitometer.
The transfer function for a square scanning spot is

sin{w 7/2} sin{w, T7/2
o o {0,7/2} sin{o,T/2}

= 4.2-2
v Oy) 0, 7/2 o, T/2 ( N
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Cathode ray tube displays produce display spots with a two-dimensional Gaussian
shape of the form

2

w 20w

2 2
P(xy) = —— exp{ S } (4.2-28)
2no

where o, is a measure of the spot spread. The equivalent transfer function of the
Gaussian-shaped scanning spot is

(c)2 + 032)(72
M} (4.2-29)

I‘P((Dx’ (Dy) = exp{_ 2

Examples of the aliasing error-resolution trade-offs for a diffraction-limited aper-
ture, a square sampling spot and a Gaussian-shaped spot are presented in Figure 4.2-8
as a function of the parameter w,. The square pulse width is set at T = 21/, so
that the first zero of the sinc function coincides with the lens cutoff frequency.
The spread of the Gaussian spot is set at 6, = 2/, corresponding to two
standard deviation units in cross section. In this example, the input image spec-
trum is modeled as

100} 251
<
oy )
o i
2 o L
o I
o - GAUSSIAN
z = SPOT
S 601 = s+
5 <
g =
- — —
W 40 £ 10
5}
= &
8 20— o 5
o
W
o
| | | > 5
o) | 2 3 2w 0 Wy
QJS (.Us

FIGURE 4.2-8. Aliasing error and resolution error obtained with different types of
prefiltering.
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A

We (0, 0) = —2——
ron 1+(w/mc)2m

(4.2-30)

where A is an amplitude constant, m is an integer governing the rate of falloff of the
Fourier spectrum and o, is the spatial frequency at the half-amplitude point. The
curves of Figure 4.2-8 indicate that the Gaussian spot and square spot scanning pre-
filters provide about the same results, while the diffraction-limited lens yields a
somewhat greater loss in resolution for the same aliasing error level. A defocused
lens would give even poorer results.

The analysis of sampling pulse and aliasing effects presented in this section has
been derived for the optical image scanning system of Figure 4.2-1. This analysis is
easily extended to the physical image sampling systems of Table 4.2-1. The flying
spot scanner, microdensitometer scanner and the vidicon camera have been included
in the table for historical consistency. These technologies have been obsoleted by the
solid state sensing technologies: Charge Coupled Device (CCD); Complementary
Metal-Oxide Semiconductor (CMOS): Contact Image Sensor (CIS). Reference (13)
provides a survey of the operating principles of the CCD, CMOS and CIS scanners
and cameras.

4.3. MONOCHROME IMAGE RECONSTRUCTION SYSTEMS

In Section 4.1, the conditions for exact image reconstruction were stated: The origi-
nal image must be spatially sampled at a rate of at least twice its highest spatial fre-
quency, and the reconstruction filter, or equivalent interpolator, must be designed to
pass the spectral component at j = 0, k = 0 without distortion and reject all spectra
for which j, k= 0. With physical image reconstruction systems, these conditions are

TABLE 4.2-1. Spot Shape of Image Scanners and Systems

System Spot Shape
Flying Spot Scanner Gaussian
Microdensitometer Scanner Square
CCD Line Scanner Square
CIS Scanner Square
Orthicon Camera Gaussian
Vidicon Camera Gaussian
CCD Camera Square
CMOS Camera Square

CIS Camera Square
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impossible to achieve exactly. Consideration is now given to the effects of using
imperfect reconstruction functions.

4.3.1. Implementation Techniques

In most digital image processing systems, electrical image samples are sequentially
output from the processor in a normal raster scan fashion. A continuous image is
generated from these electrical samples by driving an optical display such as a cath-
ode ray tube (CRT) or liquid crystal display (LCD) with the intensity of each point
set proportional to the image sample amplitude. The light array can then be viewed
directly or imaged onto photographic film for recording. Images can be recorded
directly using laser printer or inkjet recording technologies. These systems are only
capable of recording bilevel images. In order to achieve gray level recording, it is
necessary to employ halftoning (14), as is done in newspaper printing of photo-
graphs. Reference (13) describes the operating principles of LCD displays, laser
printers and inkjet printers.

A common means of image reconstruction is by use of electro-optical techniques.
For example, image reconstruction can be performed quite simply by electrically
defocusing the writing spot of a CRT display. The drawback of this technique is the
difficulty of accurately controlling the spot shape over the image field. For recording
purposes, a CRT or LCD display can be projected onto photographic film with a
slightly out of focus lens. The resulting image reconstruction is simple to perform,
but far from optimal.

If a small display spot can be achieved with a CRT or LCD display, it is possible
approximately to synthesize any desired interpolation by subscanning a resolution
cell, as shown in Figure 4.3-1.

The following subsections introduce several one- and two-dimensional interpola-
tion functions and discuss their theoretical performance. Chapter 13 presents meth-
ods of digitally implementing image reconstruction systems.

YTRUE SAMPLE

SUBSCANNED
/ SAMPLE

=

] |

| 1

—— -
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FIGURE 4.3-1. Image reconstruction by subscanning.



112 IMAGE SAMPLING AND RECONSTRUCTION
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FIGURE 4.3-2. One-dimensional interpolation waveforms.

4.3.2. Interpolation Functions

Figure 4.3-2 illustrates several one-dimensional interpolation functions. As stated
previously, the sinc function provides an exact reconstruction, but it cannot be
physically generated by an incoherent optical filtering system. It is possible to
approximate the sinc function by truncating it and then performing subscanning
(Figure 4.3-1). The simplest interpolation waveform is the square pulse function,
which results in a zero-order interpolation of the samples. It is defined mathemati-
cally as

Ry(x) = 1 for 1<x<! (4.3-1)

[\
LS}

and zero otherwise, where, for notational simplicity, the sample spacing is assumed
to be of unit dimension. A triangle function, defined as
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Ri(x) = x+1 for -1<x<0 (4.3-2a)

Ri(x) = 1-x for 0<x<1 (4.3-2b)

provides the first-order linear sample interpolation with triangular interpolation
waveforms. Figure 4.3-3 illustrates one-dimensional interpolation using sinc, square
and triangle functions.

The triangle function may be considered to be the result of convolving a square
function with itself. Convolution of the triangle function with the square function
yields a bell-shaped interpolation waveform (in Figure 4.3-2d). It is defined as

3 1
%()H%)z for —%ng—E (4.3-3a)
Ry =4 -’ for 1 <x<] (4.3-3b)
2
%(x—%) for %<x£% (4.3-3¢)
Reconstructed su;nol RS

AQNAN»QA

(a) Sinc function

| | 1 I ] |

(b) Pulse function
(zero order interpolation)

(¢) Ramp function
(first order interpolation)

FIGURE 4.3-3. One-dimensional interpolation.
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This process quickly converges to the Gaussian-shaped waveform of Figure 4.3-2f.
Convolving the bell-shaped waveform with the square function results in a third-
order polynomial function called a cubic B-spline (15-17). It is defined mathemati-
cally as

1,3 2
% + E\x\ —(x) for 0< x| <1 (4.3-4a)
R3(x) =

Loy’ for 1<|x <2 (4.3-4b)

The cubic B-spline is a particularly attractive candidate for image interpolation
because of its properties of continuity and smoothness at the sample points. It can be
shown by direct differentiation of Eq. 4.3-4 that R5(x) is continuous in its first and
second derivatives at the sample points.

As mentioned earlier, the sinc function can be approximated by truncating its
tails. Typically, this is done over a four-sample interval. The problem with this
approach is that the slope discontinuity at the ends of the waveform leads to ampli-
tude ripples in a reconstructed function. This problem can be eliminated by generat-
ing a cubic convolution function (18,19), which forces the slope of the ends of the
interpolation to be zero. The cubic convolution interpolation function can be
expressed in the following general form:

A + B+ €yl + D,
for0< x| <1 (4.3-5a)
R.(x) =

A+ Bylx|* + Gyl + D, for 1<x <2 (4.3-5b)

where A;, B;, C;, D; are weighting factors. The weighting factors are determined by
satisfying two sets of extraneous conditions:

1. R.(x) =1 atx=0,and R.(x) = 0 atx=1, 2.

2. The first-order derivative R' (x) = 0 atx=0, 1, 2.

These conditions result in seven equations for the eight unknowns and lead to the
parametric expression

(a+2)’= (@+3)+1 for 0<x <1 (4.3-6a)
R.(x) =
ald’ ~ 5alx” + 8alxl - 4a for 1< x| <2 (4.3-6b)

where a=A, of Eq. 4.3-5 is the remaining unknown weighting factor. Rifman (18)
and Bernstein (19) have set a = -1, which causes R (x) to have the same slope, —1,
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at x = 1 as the sinc function. Keys (19) has proposed setting a« = —1/2, which pro-
vides an interpolation function that approximates the original unsampled image to
as high a degree as possible in the sense of a power series expansion. The factor a in
Eq. 4.3-6 can be used as a tuning parameter to obtain a best visual interpolation (21,
22). Reichenbach and Geng (23) have developed a method of non-separable, two-
dimensional cubic convolution. They report a slight improvement in interpolation
accuracy in comparison to separable cubic convolution.

Table 4.3-1 defines several orthogonally separable two-dimensional interpolation
functions for which R(x,y) = R(x)R(y). The separable square function has a square

TABLE 4.3-1. Two-Dimensional Interpolation Functions

Function Definition
Separable sinc . T et zny/Ty} : -
(x,y) = T.T, 2nx/T, 2my/T, e
T, = 2n
Oy
R0, 0,) = {1 o]0, |[o]<o,
0 otherwise
Separable square 1 . )
<= s
Ry(x,y) = TxTy D) >
0 otherwise

sin{o T,/2} sin{(x)yTy/Z}
(wax/2)(u)yTy/2)

R(0,0,) =

Separable triangle R (x,y) = Ry(x,y) ®R\(x,y)
2
Ry (o, (ny) = Ry(®,, (ny)

Separable bell Ry(x,y) = Ry(x,y) ®R,(x,y)
Ry(0, ) = Ry(0,, ©,)

Separable cubic B-spline Ry(x,y) = Ry((x,y) ®R,(x,Y))
Ra(0, ©,) = Ry(0,, ®)

Gaussian

2,1 x2+y2
R(x,y) = [216,] expy———
ZGW

va(u)f + mz)
2

R(0,, ©,) = exp{——————l—




116 IMAGE SAMPLING AND RECONSTRUCTION

peg shape. The separable triangle function has the shape of a pyramid. Using a trian-
gle interpolation function for one-dimensional interpolation is equivalent to linearly
connecting adjacent sample peaks as shown in Figure 4.3-3¢. The extension to two
dimensions does not hold because, in general, it is not possible to fit a plane to four
adjacent samples. One approach, illustrated in Figure 4.3-4a, is to perform a planar
fit in a piecewise fashion. In region I of Figure 4.3-4a, points are linearly interpo-
lated in the plane defined by pixels A, B, C, while in region II, interpolation is per-
formed in the plane defined by pixels B, C, D. A computationally simpler method,
called bilinear interpolation, is described in Figure 4.3-4b. Bilinear interpolation is
performed by linearly interpolating points along separable orthogonal coordinates of
the continuous image field. The resultant interpolated surface of Figure 4.3-4b, con-
necting pixels A, B, C, D, is generally nonplanar. Chapter 13 shows that bilinear
interpolation is equivalent to interpolation with a pyramid function.

4.3.3. Effect of Imperfect Reconstruction Filters

The performance of practical image reconstruction systems will now be analyzed. It
will be assumed that the input to the image reconstruction system is composed of
samples of an ideal image obtained by sampling with a finite array of Dirac
samples at the Nyquist rate. From Eq. 4.1-9 the reconstructed image is found to be

Fr(x,y) = Z Z F,(jAx,k Ay)R(x—j Ax,y—k Ay) 4.3-7)

j=—eo k=—oo

where R(x, y) is the two-dimensional interpolation function of the image reconstruc-
tion system. Ideally, the reconstructed image would be the exact replica of the ideal
image as obtained from Eq. 4.1-9. That is,

Freey) = ¥ Y FjiAukAyR,(x—jAxy-kAy) (4.3-8)

j=—co k=-—co

(a) Piecewise linear interpolation {b) Bilinear interpalation

FIGURE 4.3-4. Two-dimensional linear interpolation.
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where R,(x,y) represents an optimum interpolation function such as given by Eq.
4.1-14 or 4.1-16. The reconstruction error over the bounds of the sampled image is
then

Epy) = Y Y FiAxkAy)R(x—jAx,y—kAy) - Ry(x—jAx y—kAy)]
j=—w k= e

(4.3-9)

There are two contributors to the reconstruction error: (1) the physical system
interpolation function R(x, y) may differ from the ideal interpolation function
R,(x,y), and (2) the finite bounds of the reconstruction, which cause truncation of
the interpolation functions at the boundary. In most sampled imaging systems, the
boundary reconstruction error is ignored because the error generally becomes negli-
gible at distances of a few samples from the boundary. The utilization of nonideal
interpolation functions leads to a potential loss of image resolution and to the intro-
duction of high-spatial-frequency artifacts.

The effect of an imperfect reconstruction filter may be analyzed conveniently
by examination of the frequency spectrum of a reconstructed image, as derived in
Eq. 4.1-11:

1 o e .
Fr(w, 0) = Ax—AyR(mx, o) Y Y FHlo-jo,0 ko)
jme k=—eo

(4.3-10)

Ideally, ®(w,, ®,) should select the spectral component for j = 0, k = 0 with uniform
attenuation at all spatial frequencies and should reject all other spectral components.
An imperfect filter may attenuate the frequency components of the zero-order spec-
tra, causing a loss of image resolution, and may also permit higher-order spectral
modes to contribute to the restoration, and therefore introduce distortion in the resto-
ration. Figure 4.3-5 provides a graphic example of the effect of an imperfect image
reconstruction filter. A typical cross section of a sampled image is shown in Figure
4.3-5a. With an ideal reconstruction filter employing sinc functions for interpola-
tion, the central image spectrum is extracted and all sidebands are rejected, as shown
in Figure 4.3-5¢. Figure 4.3-5d is a plot of the transfer function for a zero-order
interpolation reconstruction filter in which the reconstructed pixel amplitudes over
the pixel sample area are set at the sample value. The resulting spectrum shown in
Figure 4.3-5¢ exhibits distortion from attenuation of the central spectral mode and
spurious high-frequency signal components.

Following the analysis leading to Eq. 4.2-21, the resolution loss resulting from
the use of a nonideal reconstruction function R(x, y) may be specified quantitatively
as

£, = KM R 4.3-11)
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FIGURE 4.3-5. Power spectra for perfect and imperfect reconstruction: (a) Sampled image
input ‘WFI((DX, 0) ; (b) sinc function reconstruction filter transfer function R(®,, 0) ; (c) sinc
function interpolator output W, (®,, 0); (d) zero-order interpolation reconstruction filter
transfer function K(w,, 0) ; (e) zero-order interpolator output ‘WFO((;JX, 0).

where

o, /2 myx/z 2
ER - J‘—co”/zj._%/z WFI((DX’ 0)},)‘.‘7'[(0))‘, Wy)‘ d(,l)x d(l)y (43-12)

represents the actual interpolated image energy in the Nyquist sampling band limits,
and

(l)” /2 mv.r/z

Epy = L%/z o Wp (0, 0) do, do, (4.3-13)

is the ideal interpolated image energy. The interpolation error attributable to high-
spatial-frequency artifacts may be defined as

z, = 2 (4.3-14)

where

Ep = jj; jj; Wr (0, 0)|Ho, my)‘zdmxdmy (4.3-15)
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denotes the total energy of the interpolated image and

E, = E;-Eg (4.3-16)

is that portion of the interpolated image energy lying outside the Nyquist band lim-
its.

Table 4.3-2 lists the resolution error and interpolation error obtained with several
separable two-dimensional interpolation functions. In this example, the power spec-
tral density of the ideal image is assumed to be of the form

2 2
Wy (0, 0,) = ((’i) —@>  for mzs(%) (4.3-17)

and zero elsewhere. The interpolation error contribution of highest-order
components, j,j,>2, is assumed negligible. The table indicates that zero-order
interpolation with a square interpolation function results in a significant amount
of resolution error. Interpolation error reduces significantly for higher-order
convolutional interpolation functions, but at the expense of resolution error.

4.4. COLOR IMAGE SAMPLING SYSTEMS

There are three generic methods of sampling a color image: the tri-filter method; the
Fovean sensor method; and the Bayer color filter array method.

TABLE 4.3-2. Interpolation Error and Resolution Error for Various Separable
Two-Dimensional Interpolation Functions

Percent Percent
Resolution Error Interpolation Error

Function Ep Ey
Sinc 0.0 0.0
Square 26.9 15.7
Triangle 44.0 3.7
Bell 554 1.1
Cubic B-spline 63.2 0.3

38.6 10.3
Gaussian 0,, = %T

54.6 2.0
Gaussian ©,, = r

2

66.7 0.3

Gaussian ©,, = %
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4.4.1. Tri-Filter Method

Figure 4.4-1 shows a conceptual a tri-filter color image sampling system. In opera-
tion, a lens images a scene to an upper beam splitter, which splits the light beam
through a blue filter onto a CCD or CMOS array sensor. The light beam also strikes
the lower beam splitter, which splits the light beam through a red filter and a green
filter to red and green sensor arrays. The three sensor arrays must be precisely
aligned spatially to prevent color artifacts. Most high-end digital color cameras are
based upon this method. Its disadvantage, with respect to the other methods, is the
cost of three sensors.

LIGHT

LENS ¢ BLUE ARRAY

N

BLUE FILTER

\

N

BEAM SPLITTER

RED FILTER

GREEN FILTE j
RED ARRAY
GREEN ARRAY ™~ _ L _ _ .

FIGURE 4.4-1. Tri-filter color image sampling method.

4.4.2. Fovean Sensor Method

Fovean, Inc., a Santa Clara, California, company, has developed a CMOS sensor,
which only requires a single array chip for color image acquisition (24, 25). It relies
on the fact that the penetration depth of light in silicon is wavelength dependent;
long wavelength light penetrates deeper than short wavelength light. Figure 4.4-2 is
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(_nldd ) }
0.2 um
owell \_BLUE PHOTO :
COLLECTION.
0.6 um

GREEN PHOTON

n-well COLLECTION

RED PHOTON

p-substrate COLLECTION

FIGURE 4.4-2. Conceptual cross-section of Fovean wavelength-dependent color sensor.
Courtesy Richard Lyon, Fovean, Inc.

a conceptual drawing of a sensor that absorbs blue wavelength light photons, then
green photons and then the red photons at the deepest light penetration (24). Three
PN junctions at varying depth in the silicon capture the electron-hole pairs to gener-
ate RGB signals.

The Fovean color filter spectra are relatively broad compared to other color sen-
sors. The conversion to standard colorimetric color spaces results in some noise
multiplication.

4.4.3. Bayer Color Filter Array Method

The Bayer color filter array sensor, named after its inventor (26), is a CCD or CMOS
sensor chip containing M columns and N rows (27-33). A color filter is affixed to the
sensor as shown below

GRGRG...
BGBGB...
GRGRG...

where the letters R, G and B denote red, green and blue color filters placed over the
sensor pixels.1 Electrically, the sensor chip produces an M XN array P(x,y),

1. Inthe literature, the Bayer color filter array is also represented with R and B along the positive diagonal.
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whose values are linearly proportional to the luminance of light incident upon each
sensor pixel. Each

GR
BG

quad corresponds to a one half-resolution white pixel.

Some form of spatial interpolation is necessary to generate M x N full resolution
RGB arrays R(x,y), G(x,y) and B(x,y). This interpolation process is often called
demosaicking in the literature. Consider a 4 X4 pixel array surrounding a 2 X 2
pixel quad, as shown below.

Px-1,y-1) P(x,y—-1) P(x+1,y-1) P(x+2,y-1)
P(x-1,y) P(x,y) P(x+1,y) P(x+2,y)

P(x-1,y+1) P(x,y+1) Px+1,y+1) Px+2,y+1)
P(x-1,y+2) P(x,y+2) Px+1,y+2) Px+2,y+2)

It is assumed that, as shown above, P(x, y) corresponds to a green filter color pixel
G(x,y), P(x+1,y) corresponds to the red filter pixel R(x + 1,y), P(x,y + 1) cor-
responds to the blue filter pixel B(x,y+ 1) and P(x+ 1,y + 1) corresponds to the
green color pixel G(x+ 1,y + 1).

The simplest form of interpolation is nearest neighbor interpolation, for which
the center RGB pixel quad is generated from the center quad of the P array accord-
ing to the following relations.

R(x,y) = P(x+1,y) (4.4-1a)
R(x+1,y) = P(x+1,y) (4.4-1b)
R(x,y+1) = P(x+1,y) (4.4-1¢c)
R(x+1,y+1) = P(x+1,y) (4.4-1d)
G(x,y) = P(x,y) (4.4-2a)
Gx+1,y) = P(x,y) (4.4-2b)
Glx,y+1) = P(x+1,y+1) (4.4-2¢)

Gx+1l,y+1) = P(x+1,y+1) (4.4-2d)
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B(x,y) = P(x,y+1) (4.4-3a)
B(x+1,y) = P(x,y+1) (4.4-3b)
B(x,y+1) = P(x,y+1) (4.4-3¢c)
Bx+1,y+1) = P(x,y+1) (4.4-3d)

Better results can be obtained by averaging neighboring pixels of the same color
according to the following relations.

R(x,y) = P(x_l’y)zp(x”’y) (4.4-4a)
R(x+1,y) = P(x+1,y) (44-4b)
R, y+1) = P(x—1,y)+P(x+ 1,y)+P(4x—1,y+2)+P(x+1,y+2)
(4.4-4¢c)
R(x+1’y+])=P(x+1,y)+§(x+1,y+2) (4.4-4d)
G(x,y) = P(x,y) (4.4-5a)
Gx+1,y) = P(“1vy—1)+P(x,y)+Z(x+1,y+1)+P(x+2,y)
(4.4-5b)
Glx,y+1) = P(x,y)+P(x—1,y+1)+Z(x+l,y+1)+P(x,y+2)
(4.4-5¢)
Gx+1L,y+1)=Px+1,y+1) (4.4-5d)
B(x,y) = P(X’y"l)JZ’P(’“’y“) (4.4-62)
B(x+1,y) = P(x,y—1)+P(x+2,y—l)-;P(x,y+1)+P(x+2,y+1)
(4.4-6b)
B(x,y+1) = P(x,y+1) (4.4-6¢)
B(x+1,y+l)=P(x’y+1)+P(x+2’y+l) (4.4-6d)

2
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(a) Red, nearest neighbor (b) Red, neighbor average
(c) Green, nearest neighbor (d) Green, neighbor average
(e) Blue, nearest neighbor (f) Blue, neighbor average

FIGURE 4.4-3. Bayer interpolation differences with nearest neighbor and neighbor average
interpolation for the dol1ls gamma image; clipped squared image display.

Special cases exist when the RGB pixel quad is at the edge of the P array. It should
be noted that neighbor average interpolation can be computed with a set of four
3 x 3 impulse response arrays. Figure 4.4-3 shows the interpolation differences of
the dolls gamma RGB image for nearest neighbour and neighbor average inter-
polation. References (34-41) discuss more complex image-dependent interpolation
schemes to reduce interpolation error.
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IMAGE QUANTIZATION

Any analog quantity that is to be processed by a digital computer or digital system
must be converted to an integer number proportional to its amplitude. The conver-
sion process between analog samples and discrete-valued samples is called quanti-
zation. The following section includes an analytic treatment of the quantization
process, which is applicable not only for images but for a wide class of signals
encountered in image processing systems. Section 5.2 considers the processing of
quantized variables. The last section discusses the subjective effects of quantizing
monochrome and color images.

5.1. SCALAR QUANTIZATION

Figure 5.1-1 illustrates a typical example of the quantization of a scalar signal. In the
quantization process, the amplitude of an analog signal sample is compared to a set
of decision levels. If the sample amplitude falls between two decision levels, it is
quantized to a fixed reconstruction level lying in the quantization band. In a digital
system, each quantized sample is assigned a binary code. An equal-length binary
code is indicated in the example.

For the development of quantitative scalar signal quantization techniques, let f
and f represent the amplitude of a real, scalar signal sample and its quantized
value, respectively. It is assumed that f is a sample of a random process with known

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.
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FIGURE 5.1-1. Sample quantization.

probability density p(f) . Furthermore, it is assumed that fis constrained to lie in
the range

a,<f<ay (5.1-1)

where a;, and a, represent upper and lower limits.
Quantization entails specification of a set of decision levels d; and a set of recon-
struction levels r; such that if

d<f<d,, (5.1-2)

the sample is quantized to a reconstruction value r;. Figure 5.1-2a illustrates the
placement of decision and reconstruction levels along a line for J quantization lev-
els. The staircase representation of Figure 5.1-2b is another common form of
description.

Decision and reconstruction levels are chosen to minimize some desired quanti-
zation error measure between f and f . The quantization error measure usually
employed is the mean-square error because this measure is tractable, and it usually
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DECISION LEVELS
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FIGURE 5.1-2. Quantization decision and reconstruction levels.

correlates reasonably well with subjective criteria. For J quantization levels, the
mean-square quantization error is

J-1
= B~} = ["G-Dp) &= 3 ()’ p(Hdf (5193)

j=0

For a large number of quantization levels J, the probability density may be repre-
sented as a constant value p(r;) over each quantization band. Hence

J-1
d.,
=Y pr)[ ) df (5.1-4)
j=0 J
which evaluates to

£=1
3

J-1
3 3

2 P(Vj)[(dj+1—rj) _(dj_rj) ] (51'5)

j=0

The optimum placing of the reconstruction level r; within the range d; | to d; can

be determined by minimization of Z with respect to r; . Setting

dE .
@ - 0 (5.1-6)
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yields

d., +d.
I S
rp= — (5.1-7)

Therefore, the optimum placement of reconstruction levels is at the midpoint
between each pair of decision levels. Substitution for this choice of reconstruction
levels into the expression for the quantization error yields

J-1
£ = é Y p(r)(d;,  ~d))’ (5.1-8)
=0

The optimum choice for decision levels may be found by minimization of Z in Eq.
5.1-8 by the method of Lagrange multipliers. Following this procedure, Panter and
Dite (1) found that the decision levels may be computed to a good approximation
from the integral equation

(ag=ap[ 1p(H1 " df

d, (5.1-92)

[ e ey

where

a = J(“Z+“L) a; (5.1-9b)
for j =0, L,..., J. If the probability density of the sample is uniform, the decision lev-
els will be uniformly spaced. For nonuniform probability densities, the spacing of
decision levels is narrow in large-amplitude regions of the probability density func-
tion and widens in low-amplitude portions of the density. Equation 5.1-9 does not
reduce to closed form for most probability density functions commonly encountered
in image processing systems models, and hence the decision levels must be obtained
by numerical integration.

If the number of quantization levels is not large, the approximation of Eq. 5.1-4
becomes inaccurate, and exact solutions must be explored. From Eq. 5.1-3, setting
the partial derivatives of the error expression with respect to the decision and recon-
struction levels equal to zero yields

g_f = (d;=r)’p(d)~(d;=r;_)’p(d)) = 0 (5.1-10a)
J

oo df=0 5.1-10b

== =2 (e df = (5.1-10b)
J J
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Upon simplification, the set of equations

r=2d-r,_, (5.1-11a)
d/’+l
, PO

O S— (5.1-11b)

[ e

is obtained. Recursive solution of these equations for a given probability distribution
p(f) provides optimum values for the decision and reconstruction levels. Max (2)
has developed a solution for optimum decision and reconstruction levels for a Gaus-
sian density and has computed tables of optimum levels as a function of the number
of quantization steps. Table 5.1-1 lists placements of decision and quantization lev-
els for uniform, Gaussian, Laplacian and Rayleigh densities for the Max quantizer:

If the decision and reconstruction levels are selected to satisfy Eq. 5.1-11, it can
easily be shown that the mean-square quantization error becomes

J-1
Fon = X[ -] ) ) (5.1-12)
j=0 "

j

In the special case of a uniform probability density, the minimum mean-square
quantization error becomes

£ oo= 1 (5.1-13)

Quantization errors for most other densities must be determined by computation.

It is possible to perform nonlinear quantization by a companding operation, as
shown in Figure 5.1-3, in which the sample is transformed nonlinearly, linear quanti-
zation is performed, and the inverse nonlinear transformation is taken (3). In the com-
panding system of quantization, the probability density of the transformed samples is
forced to be uniform. Thus, from Figure 5.1-3, the transformed sample value is

g =T{f} (5.1-14)
NONLINEAR UNIFORM INVERSE
o—> —2
: TRANSFORMATION|[ QUANTIZER[ & |TRANSFORMATION ?

FIGURE 5.1-3. Companding quantizer.
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TABLE 5.1-1. Placement of Decision and Reconstruction Levels for Max Quantizer

Uniform Gaussian Laplacian Rayleigh

Bits d; T d; T d; T d; T

1 —1.0000 -0.5000  —co -0.7979 —oo -0.7071 0.0000 1.2657
0.0000  0.5000 0.0000  0.7979 0.0000 0.7071 2.0985 2.9313
1.0000 oo —oo oo

2 —1.0000 —0.7500  —eo -1.5104 oo —-1.8340  0.0000 0.8079
-0.5000 -0.2500  -0.9816 -0.4528  -1.1269 -0.4198 1.2545 1.7010
—-0.0000  0.2500 0.0000 0.4528 0.0000  0.4198 2.1667 2.6325
0.5000 0.7500 09816 1.5104 1.1269  1.8340  3.2465 3.8604
1.0000 oo o o

3 —1.0000 —-0.8750  —co —2.1519 —oo -3.0867  0.0000 0.5016
-0.7500 -0.6250  -1.7479 -1.3439  -2.3796 -1.6725 0.7619 1.0222
-0.5000 -0.3750  -1.0500 -0.7560  -1.2527 -0.8330 1.2594 1.4966
-0.2500 -0.1250  -0.5005 -0.2451  -0.5332 -0.2334 1.7327 1.9688
0.0000 0.1250 0.0000 0.2451 0.0000 0.2334 22182 2.4675
0.2500 0.3750 0.5005  0.7560 0.5332 0.8330  2.7476 3.0277
0.5000  0.6250 1.0500 1.3439 1.2527 1.6725 3.3707 3.7137
0.7500  0.8750 1.7479  2.1519 23796 3.0867  4.2124 47111
1.0000 oo oo oo

4 —1.0000 —0.9375  —co —2.7326  —oo —4.4311 0.0000 0.3057
-0.8750 -0.8125  -2.4008 -2.0690 -3.7240 -3.0169  0.4606 0.6156
-0.7500 -0.6875  -1.8435 -1.6180 -2.5971 -2.1773 0.7509 0.8863
-0.6250 -0.5625  -1.4371 -1.2562 -1.8776 -1.5778 1.0130 1.1397
—0.5000 -0.4375  -1.0993 -0.9423  -1.3444 -1.1110 1.2624 1.3850
-0.3750 -0.3125  -0.7995 -0.6568  -0.9198 -0.7287 1.5064 1.6277
-0.2500 -0.1875  -0.5224 -0.3880  -0.5667 -0.4048 1.7499 1.8721
-0.1250 -0.0625  -0.2582 -0.1284  -0.2664 -0.1240 1.9970 2.1220
0.0000 0.0625 0.0000 0.1284 0.0000 0.1240  2.2517 2.3814
0.1250 0.1875 0.2582 0.3880 0.2644  0.4048 2.5182 2.6550
0.2500 0.3125 0.5224 0.6568 0.5667 0.7287 2.8021 2.9492
0.3750 0.4375 0.7995 0.9423 09198 1.1110 3.1110 3.2729
0.5000 0.5625 1.0993 1.2562 1.3444  1.5778 3.4566 3.6403
0.6250 0.6875 1.4371  1.6180 1.8776  2.1773 3.8588 4.0772
0.7500 0.8125 1.8435  2.0690 25971 3.0169  4.3579 4.6385
0.8750  0.9375 24008 2.7326 3.7240 4.4311 5.0649 5.4913

1.0000
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where the nonlinear transformation 7{ -} is chosen such that the probability density
of g is uniform. Thus,

p(g) =1 (5.1-15)

for —% <g<! If fis a zero mean random variable, the proper transformation func-
tion is (4)

[\

T{f} = j_f p(2) dz—% (5.1-16)

That is, the nonlinear transformation function is equivalent to the cumulative proba-
bility distribution of f. Table 5.1-2 contains the companding transformations and
inverses for the Gaussian, Rayleigh and Laplacian probability densities. It should be
noted that nonlinear quantization by the companding technique is an approximation
to optimum quantization, as specified by the Max solution. The accuracy of the
approximation improves as the number of quantization levels increases.

5.2. PROCESSING QUANTIZED VARIABLES

Numbers within a digital computer that represent image variables, such as lumi-
nance or tristimulus values, normally are input as the integer codes corresponding to
the quantization reconstruction levels of the variables, as illustrated in Figure 5.1-1.
If the quantization is linear, the jth integer value is given by

j= {(1— 1 ﬂlv (5.2-1)

ay—ay,

where J is the maximum integer value, f is the unquantized pixel value over a lower-
to-upper range of a; to a;, and [-]y denotes the nearest integer value of the argu-
ment. The corresponding reconstruction value is
a;;—a a;;—a
U L. U L (52_2)

= + +a
i 7 T T T

Hence, r; is linearly proportional to j. If the computer processing operation is itself
linear, the integer code j can be numerically processed rather than the real number
r; . However, if nonlinear processing is to be performed, for example, taking the log-
arithm of a pixel, it is necessary to process r; as a real variable rather than the inte-
ger j because the operation is scale dependent. If the quantization is nonlinear, all
processing must be performed in the real variable domain.

In a digital computer, there are two major forms of numeric representation: real
and integer. Real numbers are stored in floating-point form, and typically have a
large dynamic range with fine precision. Integer numbers can be strictly positive or
bipolar (negative or positive). The two's complement number system is commonly
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used in computers and digital processing hardware for representing bipolar integers.
The general format is as follows:

S.M,M,,...Mpg |

where S is a sign bit (0 for positive, 1 for negative), followed, conceptually, by a
binary point, M}, denotes a magnitude bit, and B is the number of bits in the com-
puter word. Table 5.2-1 lists the two's complement correspondence between inte-
ger, fractional and decimal numbers for a 4-bit word. In this representation, all pixels

TABLE 5.2-1. Two’s Complement Code for 4-Bit Code Word

Fractional Decimal
Code Value Value
7
0.111 + +0.875
0.110 +g +0.750
0.101 +§ +0.625
0.100 +;-‘ +0.500
0.011 +§ +0.375
0.010 +§ +0.250
0.001 +é +0.125
0.000 0 0.000
1111 _1 _0.125
8
1.110 _2 ~0.250
8
3
1.101 _3 0375
8
1.100 —g -0.500
5
1011 -2 0.625
6
1.010 -2 0750
7
1.001 -1 0.875
1.000 —g ~1.000
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are scaled in amplitude between —1.0 and 1.0 - 2"#=1 One of the advantages of
this representation is that pixel scaling is independent of precision in the sense that a
pixel F(j, k) is bounded over the range

-1.0<F(j,k)<1.0

regardless of the number of bits in a word.

5.3. MONOCHROME AND COLOR IMAGE QUANTIZATION

This section considers the subjective and quantitative effects of the quantization of
monochrome and color images.

5.3.1. Monochrome Image Quantization

Monochrome images are typically input to a digital image processor as a sequence
of uniform-length binary code words. In the literature, the binary code is often
called a pulse code modulation (PCM) code. Because uniform-length code words
are used for each image sample, the number of amplitude quantization levels is
determined by the relationship

L=2" (5.3-1)

where B represents the number of code bits allocated to each sample.

A bit rate compression can be achieved for PCM coding by the simple expedient
of restricting the number of bits assigned to each sample. If image quality is to be
judged by an analytic measure, B is simply taken as the smallest value that satisfies
the minimal acceptable image quality measure. For a subjective assessment, B is
lowered until quantization effects become unacceptable. The eye is only capable of
judging the absolute brightness of about 10 to 15 shades of gray, but it is much more
sensitive to the difference in the brightness of adjacent gray shades. For a reduced
number of quantization levels, the first noticeable artifact is a gray scale contouring
caused by a jump in the reconstructed image brightness between quantization levels
in a region where the original image is slowly changing in brightness. The minimal
number of quantization bits required for basic PCM coding to prevent gray scale
contouring is dependent on a variety of factors, including the linearity of the image
display and noise effects before and after the image digitizer.

Assuming that an image sensor produces an output pixel sample proportional to
the image intensity, a question of concern then is: Should the image intensity itself,
or some function of the image intensity, be quantized? Furthermore, should the quan-
tization scale be linear or nonlinear? Linearity or nonlinearity of the quantization
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scale can be viewed as a matter of implementation. A given nonlinear quantization
scale can be realized by the companding operation of Figure 5.1-3, in which a non-
linear amplification weighting of the continuous signal to be quantized is performed,
followed by linear quantization, followed by an inverse weighting of the quantized
amplitude. Consideration is limited here to linear quantization of companded pixel
samples.

There have been many experimental studies to determine the number and place-
ment of quantization levels required to minimize the effect of gray scale contouring
(5-8). Goodall (5) performed some of the earliest experiments on digital television
and concluded that 6 bits of intensity quantization (64 levels) were required for good
quality and that 5 bits (32 levels) would suffice for a moderate amount of contour-
ing. Other investigators have reached similar conclusions. In most studies, however,
there has been some question as to the linearity and calibration of the imaging sys-
tem. As noted in Section 3.5.3, most television cameras and monitors exhibit a non-
linear response to light intensity. Also, the photographic film that is often used to
record the experimental results is highly nonlinear. Finally, any camera or monitor
noise tends to diminish the effects of contouring.

Figure 5.3-1 contains photographs of an image linearly quantized with a variable
number of quantization levels. The source image is a split image in which the left
side is a luminance image and the right side is a computer-generated linear ramp. In
Figure 5.3-1, the luminance signal of the image has been uniformly quantized with
from 8 to 256 levels (3 to 8 bits). Gray scale contouring in these pictures is apparent
in the ramp part of the split image for 6 or fewer bits. The contouring of the lumi-
nance image part of the split image becomes noticeable for 5 bits.

As discussed in Section 2.4, it has been postulated that the eye responds logarith-
mically or to a power law of incident light amplitude. There have been several
efforts to quantitatively model this nonlinear response by a lightness function
A, which is related to incident luminance. Priest et al. (9) have proposed a square-
root nonlinearity

A = (100.07)"? (5.3-2)

where 0.0<Y<1.0 and 0.0 <A <10.0. Ladd and Pinney (10) have suggested a cube-
root scale

A = 2.468(100.0Y)"° ~1.636 (5.3-3)

A logarithm scale

A = 5.0[log | ,{100.0}] (5.3-4)
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(a) 8 bit, 256 levels (b) 7 bit, 128 levels
(c) 6 bit, 64 levels (d) 5 bit, 32 levels
(e) 4 bit, 16 levels (f) 3 bit, 8 levels

FIGURE 5.3-1. Uniform quantization of the peppers ramp luminance monochrome
image.
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A

LIGHTNESS,

0 1 1

LUMINANCE, Y, PERCENT

FIGURE 5.3-2. Lightness scales.

where 0.01 <Y <1.0 has also been proposed by Foss et al. (11). Figure 5.3-2 com-
pares these three scaling functions.

In an effort to reduce the gray scale contouring of linear quantization, it is reason-
able to apply a lightness scaling function prior to quantization, and then to apply its
inverse to the reconstructed value in correspondence to the companding quantizer of
Figure 5.1-3. Figure 5.3-3 presents a comparison of linear, square-root, cube-root
and logarithmic quantization for a 4-bit quantizer. Among the lightness scale quan-
tizers, the gray scale contouring appears least for the square-root scaling. The light-
ness quantizers exhibit less contouring than the linear quantizer in dark areas but
worse contouring for bright regions.

5.3.2. Color Image Quantization

A color image may be represented by its red, green and blue source tristimulus val-
ues or any linear or nonlinear invertible function of the source tristimulus values. If
the red, green and blue tristimulus values are to be quantized individually, the
selection of the number and placement of quantization levels follows the same
general considerations as for a monochrome image. The eye exhibits a nonlinear
response to spectral lights as well as white light, and, therefore, it is subjectively
preferable to compand the tristimulus values before quantization. It is known,
however, that the eye is most sensitive to brightness changes in the blue region of
the spectrum, moderately sensitive to brightness changes in the green spectral
region and least sensitive to red changes. Thus, it is possible to assign quantization
levels on this basis more efficiently than simply using an equal number for each
tristimulus value.
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(a) Linear (b) Log

(¢) Square root (d) Cube root

FIGURE 5.3-3. Comparison of lightness scale quantization of the peppers ramp
_luminance image for 4 bit quantization.

Figure 5.3-4 is a general block diagram for a color image quantization system. A
source image described by source tristimulus values R, G, B is converted to three
components x(1), x(2), x(3), which are then quantized. Next, the quantized compo-
nents x(1), x(2), x(3) are converted back to the original color coordinate system,
producing the quantized tristimulus values R, G, B. The quantizer in Figure 5.3-4
effectively partitions the color space of the color coordinates x(1), x(2), x(3) into
quantization cells and assigns a single color value to all colors within a cell. To be
most efficient, the three color components x(1), x(2), x(3) should be quantized jointly.
However, implementation considerations often dictate separate quantization of the
color components. In such a system, x(1), x(2), x(3) are individually quantized over
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R (0 K R
COLOR COLOR INVERSE COLOR
mAGE |- | cooroinaTE | X2V quanTizer [ X2 gg(';ggmATE 6 | mace
SOURCE | g CONVERSION | x(3) A3 CONVERSION B DISPLAY

FIGURE 5.3-4 Color image quantization model.

their maximum ranges. In effect, the physical color solid is enclosed in a rectangular
solid, which is then divided into rectangular quantization cells.

If the source tristimulus values are converted to some other coordinate system for
quantization, some immediate problems arise. As an example, consider the
quantization of the UVW tristimulus values. Figure 5.3-5 shows the locus of
reproducible colors for the RGB source tristimulus values plotted as a cube and the
transformation of this color cube into the UVW coordinate system. It is seen that
the RGB cube becomes a parallelepiped. If the UVW tristimulus values are to be
quantized individually over their maximum and minimum limits, many of the
quantization cells represent nonreproducible colors and hence are wasted. It is only
worthwhile to quantize colors within the parallelepiped, but this generally is a
difficult operation to implement efficiently.

In the present analysis, it is assumed that each color component is linearly quan-
tized over its maximum range into 220 Jevels, where B(i) represents the number of
bits assigned to the component x(i). The total number of bits allotted to the coding is
fixed at

B, = B(1)+B(2)+B(3) (5.3-5)

FIGURE 5.3-5. Loci of reproducible colors for RyGpBp and UVW coordinate systems.



142 IMAGE QUANTIZATION

Let a, (i) represent the upper bound of x(i) and «, (i) the lower bound. Then each
quantization cell has dimension

aU(i) —a; (i)

, (5.3-6)
23(1)

q(i) =

Any color with color component x(i) within the quantization cell will be quantized
to the color component value x(i). The maximum quantization error along each
color coordinate axis is then

ay(i)—ay (i)

B+ 1 (5.3-7)

e(i) = |x(i)—x(i)| =

FIGURE 5.3-6. Chromaticity shifts resulting from uniform quantization of the
smpte girl linear color image.
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Thus, the coordinates of the quantized color become

x(i) = x(i) e(i) (5.3-8)

subject to the conditions «, (i) < x(i)<a y(1) . It should be observed that the values of
x(i) will always lie within the smallest cube enclosing the color solid for the given
color coordinate system. Figure 5.3-6 illustrates chromaticity shifts of various colors
for quantization in the Ry Gy By and Yuy coordinate systems (12).

Jain and Pratt (12) have investigated the optimal assignment of quantization deci-
sion levels for color images in order to minimize the geodesic color distance
between an original color and its reconstructed representation. Interestingly enough,
it was found that quantization of the Ry Gy By color coordinates provided better
results than for other common color coordinate systems. The primary reason was
that all quantization levels were occupied in the Ry Gy By system, but many levels
were unoccupied with the other systems. This consideration seemed to override the
metric nonuniformity of the Ry G By color space.

Sharma and Trussell (13) have surveyed color image quantization for reduced
memory image displays.
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PART 3

DISCRETE TWO-DIMENSIONAL
PROCESSING

Part 3 of the book is concerned with a unified analysis of discrete two-dimensional
processing operations. Vector-space methods of image representation are developed
for deterministic and stochastic image arrays. Several forms of discrete two-
dimensional superposition and convolution operators are developed and related to
one another. Two-dimensional transforms, such as the Fourier, Hartley, cosine and
Karhunen-Loeve transforms, are introduced. Consideration is given to the utilization
of two-dimensional transforms as an alternative means of achieving convolutional
processing more efficiently.






6

DISCRETE IMAGE MATHEMATICAL
CHARACTERIZATION

Chapter 1 presented a mathematical characterization of continuous image fields.
This chapter develops a vector-space algebra formalism for representing discrete
image fields from a deterministic and statistical viewpoint. Appendix 1 presents a
summary of vector-space algebra concepts.

6.1. VECTOR-SPACE IMAGE REPRESENTATION

In Chapter 1, a generalized continuous image function F(x, y, f) was selected to
represent the luminance, tristimulus value, or some other appropriate measure of a
physical imaging system. Image sampling techniques, discussed in Chapter 4,
indicated means by which a discrete array F(j, k) could be extracted from the contin-
uous image field at some time instant over some rectangular area —J<j<J,
-K<k<K. It is often helpful to regard this sampled image array as a N, XN,
element matrix

F = [F(n, n,)] (6.1-1)

for 1<n,;<N, where the indices of the sampled array are reindexed for consistency
with standard vector-space notation. Figure 6.1-1 illustrates the geometric relation-
ship between the Cartesian coordinate system of a continuous image and its matrix
array of samples. Each image sample is called a pixel.

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.
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N, ]

FIGURE 6.1-1. Geometric relationship between a continuous image and its matrix array of
samples.

For purposes of analysis, it is often convenient to convert the image matrix to
vector form by column (or row) scanning F, and then stringing the elements together
in a long vector (1). An equivalent scanning operation can be expressed in quantita-
tive form by the use of a N, x 1 operational vector v, anda N, -N,xN, matrix N,
defined as

0 ! 0 !
0 n—1 0 n-1
Vn= 1 n Nn= 1 n (61-2)
0 n-e.-l 0 n+1
1 0] N, L 0 ] N,

Then the vector representation of the image matrix F is given by the stacking oper-
ation

NZ
f= Y NJFv, (6.1-3)

n=

In essence, the vector v, extracts the nth column from F and the matrix N, places
this column into the nth segment of the vector f. Thus, f contains the column-scanned
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elements of F. The inverse relation of casting the vector f into matrix form is obtained
from

N,
F= Y Niv, (6.1-4)

n=1

With the matrix-to-vector operator of Eq. 6.1-3 and the vector-to-matrix operator of
Eq. 6.1-4, it is now possible easily to convert between vector and matrix representa-
tions of a two-dimensional array. The advantages of dealing with images in vector
form are a more compact notation and the ability to apply results derived previously
for one-dimensional signal processing applications. It should be recognized that Eqs
6.1-3 and 6.1-4 represent more than a lexicographic ordering between an array and a
vector; these equations define mathematical operators that may be manipulated ana-
lytically. Numerous examples of the applications of the stacking operators are given
in subsequent sections.

6.2. GENERALIZED TWO-DIMENSIONAL LINEAR OPERATOR

A large class of image processing operations are linear in nature; an output image
field is formed from linear combinations of pixels of an input image field. Such
operations include superposition, convolution, unitary transformation and discrete
linear filtering.

Consider the N, x N, element input image array F(n,n,). A generalized linear
operation on this image field results in a M, x M, output image array P(m,m,) as
defined by

N, N
P(my, my) = z z F(ny,ny)0(ny, ny;my, my) (6.2-1)

ni=1 n,=1

where the operator kernel O(n,, n,; m, m,) represents a weighting constant, which,
in general, is a function of both input and output image coordinates (1).

For the analysis of linear image processing operations, it is convenient to adopt
the vector-space formulation developed in Section 6.1. Thus, let the input image
array F(n, n,) be represented as matrix F or alternatively, as a vector f obtained by
column scanning F. Similarly, let the output image array P(m,, m,) be represented
by the matrix P or the column-scanned vector p. For notational simplicity, in the
subsequent discussions, the input and output image arrays are assumed to be square
and of dimensions N, = N, =N and M, = M, = M, respectively. Now, let T
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denote the M*x N* matrix performing a linear transformation on the Nx1 input
image vector f yielding the M x1 output image vector

p = Tf (6.2-2)

The matrix T may be partitioned into M x N submatrices T,,, and written as

T, T, ... Ty
To | Tu Ty o Ty (6.2-3)
TMl TM2 TMN

From Eq. 6.1-3, it is possible to relate the output image vector p to the input image
matrix F by the equation

N
p=3 TNFv, (6.2-4)

n=1

Furthermore, from Eq. 6.1-4, the output image matrix P is related to the input image
vector p by

M
P=3 M,pu, (6.2-5)

m=1

Combining the above yields the relation between the input and output image matrices,
M N
P=3% Y (M, TN)F(v,u,) (6.2-6)
m=1 n=1

where it is observed that the operators M,, and N, simply extract the partition T,,,
from T. Hence

M N

p = T F(vu) (6.2-7)
z z mn n-m
m=1 n=1

If the linear transformation is separable such that T may be expressed in the
direct product form

T = To® Ty (6.2-8)
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FIGURE 6.2-1. Structure of linear operator matrices.

where T, and T are row and column operators on F, then

T,, = Tg(m,n)T, (6.2-9)
Asa consequence,
M N
P=TFY 3 Tpommnv,u,=TFT, (6.2-10)
m=1 n=1

Hence the output image matrix P can be produced by sequential row and column
operations.

In many image processing applications, the linear transformations operator T is
highly structured, and computational simplifications are possible. Special cases of
interest are listed below and illustrated in Figure 6.2-1 for the case in which the
input and output images are of the same dimension, M = N.

1. Column processing of F:

T = diag[Tep, Teg oo Tyl (6.2-11)

where T, is the transformation matrix for the jth column.
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2. Identical column processing of F:

T = diag[T, Tg, .., Tl = Te® 1y (6.2-12)

3. Row processing of F:

T, = diag[Ty,(m,n), Tp,(m,n), ..., Tpy(m,n)] (6.2-13)

where T R is the transformation matrix for the jth row.

4. Identical row processing of F:

T,, = diag[Tx(m, n), Tp(m, n), ..., Tp(m, n)] (6.2-14a)

and

T=1,0T, (6.2-14b)

5. Identical row and identical column processing of F:

T=T:®L+I,®T, (6.2-15)

The number of computational operations for each of these cases is tabulated in Table
6.2-1.

Equation 6.2-10 indicates that separable two-dimensional linear transforms can
be computed by sequential one-dimensional row and column operations on a data
array. As indicated by Table 6.2-1, a considerable savings in computation is possible
for such transforms: computation by Eq 6.2-2 in the general case requires M N
operations; computation by Eq. 6.2-10, when it applies, requires only MN* + M°N
operations. Furthermore, F may be stored in a serial memory and fetched line by

TABLE 6.2-1. Computational Requirements for Linear Transform Operator

Operations
Case (Multiply and Add)
General Ny
Column processing N3
Row processing N3
Row and column processing 2N3- N2

Separable row and column processing matrix form N3




IMAGE STATISTICAL CHARACTERIZATION 153

line. With this technique, however, it is necessary to transpose the result of the col-
umn transforms in order to perform the row transforms. References 2 and 3 describe
algorithms for line storage matrix transposition.

6.3. IMAGE STATISTICAL CHARACTERIZATION

The statistical descriptors of continuous images presented in Chapter 1 can be
applied directly to characterize discrete images. In this section, expressions are
developed for the statistical moments of discrete image arrays. Joint probability den-
sity models for discrete image fields are described in the following section. Refer-
ence 4 provides background information for this subject.

The moments of a discrete image process may be expressed conveniently in vec-
tor-space form. The mean value of the discrete image function is a matrix of the
form

E{F} = [E{F(n),n,)}] (6.3-1)

If the image array is written as a column-scanned vector, the mean of the image vec-
tor is

N,
e = E{f} = ¥ N,E{F}v, (6.3-2)
n=1

The correlation function of the image array is given by

R(ny,n,y; ny,ny) = E{F(ny, ny)F*(ns,n,)} (6.3-3)

where the n; represent points of the image array. Similarly, the covariance function
of the image array is

K(n, nysng, ny) = E{[F(ny,n,) — E{F(ny,ny) }|[F*(n3, ny) - E{F*(n3, n4) }1}
(6.3-4)

Finally, the variance function of the image array is obtained directly from the covari-
ance function as

Gz(nl, ny) = K(ny,ny; ny, ny) (6.3-5)
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If the image array is represented in vector form, the correlation matrix of f can be
written in terms of the correlation of elements of F as

N, N,
R, = E{ff*'} = E{( 3 Nvam]( 3 VZF*TNZ]} (6.3-6a)
m=1

n=1

or
N2 NZ
T T
R; = z z NmE{vavnF* }Nn (6.3-6b)
m=1 n=1
The term

(6.3-7)

is the N, x N, correlation matrix of the mth and nth columns of F. Hence it is possi-
ble to express R; in partitioned form as

R, R, .. Ry
R, = Ry, Ry, . Ry
Ry, Ry, .. Ryy

2 (6.3-8)

The covariance matrix of f can be found from its correlation matrix and mean vector
by the relation

K; = Rp-nng (6.3-9)

A variance matrix Vg of the array F(n, n,) is defined as a matrix whose elements
represent the variances of the corresponding elements of the array. The elements of
this matrix may be extracted directly from the covariance matrix partitions of K;.
That is,

Vg(ny,ny) = an’ nz(nl,nl) (6.3-10)
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If the image matrix F is wide-sense stationary, the correlation function can be
expressed as

R(ny, nying, ny) = R(n— ny, ny— ny) = R(j, k) (6.3-11)

where j = n;—ny and k = n,-n,. Correspondingly, the covariance matrix parti-
tions of Eq. 6.3-9 are related by

K,, =K, m2n (6.3-12a)
K}, = Kf m<n (6.3-12b)
where k = |m—n| + 1. Hence, for a wide-sense-stationary image array
K, K, Ky,
K= 5 K Ky, -1
Ne TNl : (6.3-13)

The matrix of Eq. 6.3-13 is of block Toeplitz form (5). Finally, if the covariance
between elements is separable into the product of row and column covariance func-
tions, then the covariance matrix of the image vector can be expressed as the direct
product of row and column covariance matrices. Under this condition

Kp(1, DKo Kp(1,2)Ke ... Kg(1, N)K,
K = K ®K, = | Ke@DKc Ke22Ke . Kz(2,N)K,
Ki(Np DK Kp(Np,2)Ke oo Kg(Ny, Ny)K

(6.3-14)

where K. is a N; x N, covariance matrix of each column of F and K is a N, XN,
covariance matrix of the rows of F.
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As a special case, consider the situation in which adjacent pixels along an image
row have a correlation of (0.0<p,<1.0) and a self-correlation of unity. Then the

covariance matrix reduces to

Ny—1
1 Pr - PR’
N,-2
KR=012€ Pr 1 S
Ny—1 N,-2
PR’ pRe - L

(6.3-15)

where oi denotes the variance of pixels along a row. This is an example of the cova-
riance matrix of a Markov process, analogous to the continuous autocovariance
function exp(-ax|). Figure 6.3-1 contains a plot by Davisson (6) of the measured
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FIGURE 6.3-2. Photograph of smpte girl luminance image.

covariance of pixels along an image line of the monochrome image of Figure 6.3-2.
The data points can be fit quite well with a Markov covariance function with
p = 0.953. Similarly, the covariance between lines can be modeled well with a
Markov covariance function with p = 0.965. If the horizontal and vertical covari-
ances were exactly separable, the covariance function for pixels along the image
diagonal would be equal to the product of the horizontal and vertical axis covariance
functions. In this example, the approximation was found to be reasonably accurate
for up to five pixel separations.

The discrete power-spectral density of a discrete image random process may be
defined, in analogy with the continuous power spectrum of Eq. 1.4-13, as the two-
dimensional discrete Fourier transform of its stationary autocorrelation function.
Thus, from Eq. 6.3-11

N-1 Np-1

Wun =Y Y R(j,k)exp{—Zni(}{l—u+&)} (6.3-16)

N
j=0 k=0 172

Figure 6.3-3 shows perspective plots of the power-spectral densities for separable
and circularly symmetric Markov processes.
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(a) Separable

(b) Circularly symmetric

FIGURE 6.3-3. Power spectral densities of Markov process sources; N = 256, log magnitude
displays.

6.4. IMAGE PROBABILITY DENSITY MODELS

A discrete image array F(n,, n,) can be completely characterized statistically by its
joint probability density, written in matrix form as

p(F)=p{F(1,1),F(2,1), ..., F(N;,N,) } (6.4-1a)
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or in corresponding vector form as
p(£)=p{f(1),f(2), ... (Q)} (6.4-1b)

where Q = N, - N, is the order of the joint density. If all pixel values are statistically
independent, the joint density factors into the product

p(®) =p{f()}p{f(2)}...pIAQ)} (6.4-2)

of its first-order marginal densities.
The most common joint probability density is the joint Gaussian, which may be
expressed as

0/2 1/2

p(®) = 2m) =K exp{—%(f—naTKf‘(f—nf)} (6.4-3)

where K; is the covariance matrix of f, n; is the mean of f and |K{| denotes the
determinant of K;. The joint Gaussian density is useful as a model for the density of
unitary transform coefficients of an image. However, the Gaussian density is not an
adequate model for the luminance values of an image because luminance is a posi-
tive quantity and the Gaussian variables are bipolar.

Expressions for joint densities, other than the Gaussian density, are rarely found
in the literature. Huhns (7) has developed a technique of generating high-order den-
sities in terms of specified first-order marginal densities and a specified covariance
matrix between the ensemble elements.

In Chapter 5, techniques were developed for quantizing variables to some dis-
crete set of values called reconstruction levels. Let rjq(q) denote the reconstruction
level of the pixel at vector coordinate (¢). Then the probability of occurrence of the
possible states of the image vector can be written in terms of the joint probability
distribution as

P(t) = pif(l) = r; (D}P{f(2) =1;(2)}...pAAQ) = 1; (A} (6.4-4)

where 0<j ¢Siop =J-1 Normally, the reconstruction levels are set identically for
each vector component and the joint probability distribution reduces to

P() = p{f(1) = 1, }pUf2) = 7, b p Q) = 7} (6.4-5)
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Probability distributions of image values can be estimated by histogram measure-
ments. For example, the first-order probability distribution

PLA@)] = Prlflq) =1)] (6.4-6)

of the amplitude value at vector coordinate ¢ can be estimated by examining a large
collection of images representative of a given image class (e.g., chest x-rays, aerial
scenes of crops). The first-order histogram estimate of the probability distribution is
the frequency ratio

N,(j)

P

Hp(jiq) = (6.4-7)

where N, represents the total number of images examined and N ,(j) denotes the
number for which f(q) = r forj=0, 1,...,J — 1. If the image source is statistically
stationary, the first-order probability distribution of Eq. 6.4-6 will be the same for all
vector components g. Furthermore, if the image source is ergodic, ensemble aver-
ages (measurements over a collection of pictures) can be replaced by spatial aver-
ages. Under the ergodic assumption, the first-order probability distribution can be
estimated by measurement of the spatial histogram

H(j) = Ns() (6.4-8)

where Ng(j) denotes the number of pixels in an image for which f(q) = r for
1<g<Q and 0<j<J-1. For example, for an image with 256 gray levels, H(j)
denotes the number of pixels possessing gray level j for 0 <j <255.

Figure 6.4-1 shows first-order histograms of the red, green and blue components
of a color image. Most natural images possess many more dark pixels than bright
pixels, and their histograms tend to fall off exponentially at higher luminance levels.

Estimates of the second-order probability distribution for ergodic image sources
can be obtained by measurement of the second-order spatial histogram, which is a
measure of the joint occurrence of pairs of pixels separated by a specified distance.
With reference to Figure 6.4-2, let F(n;,n,) and F(n,, n,) denote a pair of pixels
separated by r radial units at an angle 8 with respect to the horizontal axis. As a
consequence of the rectilinear grid, the separation parameters may only assume cer-
tain discrete values. The second-order spatial histogram is then the frequency ratio

Ng(j1Jp)

6.4-9
0, (6.4-9)

HS(.j]:.jz; T, e) =
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FIGURE 6.4-1. Histograms of the red, green and blue components of the smpte girl
_linear color image.

where N¢(j;,j,) denotes the number of pixel pairs for which F(n,, n,) = r and
F(ng,ny) =1 . The factor Qp in the denominator of Eq. 6.4-9 represents the total
number of pixels lying in an image region for which the separation is (r, ).
Because of boundary effects, Q7 < Q.

Second-order spatial histograms of a monochrome image are presented in Figure
6.4-3 as a function of pixel separation distance and angle. As the separation
increases, the pairs of pixels become less correlated and the histogram energy tends

to spread more uniformly about the plane.
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FIGURE 6.4-3. Second-order histogram of the smpte girl luminance monochrome
image; r = 1 and 6 = 0.

6.5. LINEAR OPERATOR STATISTICAL REPRESENTATION

If an input image array is considered to be a sample of a random process with known
first and second-order moments, the first- and second-order moments of the output
image array can be determined for a given linear transformation. First, the mean of
the output image array is

N, N,
E{P(m,,my)} = E z z F(ny,ny)0(ny,ny: my, my) (6.5-1a)

n=1 n,=1
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Because the expectation operator is linear,

Nl N2
E{P(my,m,)} = z z E{F(ny,ny)}0(n, ny; my, m,) (6.5-1b)

n=1 n,=1
The correlation function of the output image array is

Rp(my, mysmy, my) = E{P(m, my)P*(my, my)} (6.5-2a)

or in expanded form

N, N, 7
Rp(my, my; my,my) = E { z z F(ny,ny))0(n, ny; my, my) | X

ni=1 n,=1

z z F*(”y n4)0*(n3, ns; my, m4)

ny=1 ny=1

{ Mook l (6.5-2b)

After multiplication of the series, and performance of the expectation operation, one
obtains

Ny N, NN,
Rp(my, my; my, my) = z z z ZRp(n17"27n3,"4)0(n1,n2;mlymz)

n =1 ny=1 n3=1 ny=1
X 0*(n37 Ny, My) (6.5-3)

where R(n, ny; ny, ny) represents the correlation function of the input image array.
In a similar manner, the covariance function of the output image is found to be

Nl N2 Nl NZ
Kp(my, my;ms, my) = z z z 2KF(nl,nz,n3,n4)0(nl,n2;ml,m2)

ni=1 ny=1 n3=1 ny=1
X O*(ny, ny; my, my) (6.5-4)

If the input and output image arrays are expressed in vector form, the formulation of

the moments of the transformed image becomes much more compact. The mean of
the output vector p is

M, = E{p} = E{Tf} = TE{f} = Tn, (6.5-5)
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and the correlation matrix of p is
R, = E{pp*'} = E{TE* T'} = TRT* (6.5-6)

Finally, the covariance matrix of p is
K, = TK,T* (6.5-7)
p = ¢ )

Applications of this theory to superposition and unitary transform operators are
given in following chapters.

A special case of the general linear transformation p = Tf, of fundamental
importance, occurs when the covariance matrix of Eq. 6.5-7 assumes the form

K, = TK,T* = A (6.5-8)

where A is a diagonal matrix. In this case, the elements of p are uncorrelated. From
Appendix A1.2, it is found that the transformation T, which produces the diagonal
matrix A, has rows that are eigenvectors of K;. The diagonal elements of A are the
corresponding eigenvalues of K. This operation is called both a matrix diagonal-
ization and a principal components transformation.
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SUPERPOSITION
AND CONVOLUTION

In Chapter 1, superposition and convolution operations were derived for continuous
two-dimensional image fields. This chapter provides a derivation of these operations
for discrete two-dimensional images. Three types of superposition and convolution
operators are defined: finite area, sampled image and circulant area. The finite-area
operator is a linear filtering process performed on a discrete image data array. The
sampled image operator is a discrete model of a continuous two-dimensional image
filtering process. The circulant area operator provides a basis for a computationally
efficient means of performing either finite-area or sampled image superposition and
convolution.

7.1. FINITE-AREA SUPERPOSITION AND CONVOLUTION

Mathematical expressions for finite-area superposition and convolution are devel-
oped below for both series and vector-space formulations.

7.1.1. Finite-Area Superposition and Convolution: Series Formulation

Let F(n,, n,) denote an image array for n, n, = 1, 2,..., N. For notational simplicity,
all arrays in this chapter are assumed square. In correspondence with Eq. 1.2-6, the
image array can be represented at some point (m,, m,) as a sum of amplitude
weighted Dirac delta functions by the discrete sifting summation

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.
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F(m,m,) = zz F(ny,ny)8(m;—n;+1,m,—n,+1) (7.1-1)

ny

The term

1 if m =n, and m, = n, (7.1-2a)
d(my—n +1,my—ny+1) =
0 otherwise (7.1-2b)

is a discrete delta function. Now consider a spatial linear operator O{-} that pro-
duces an output image array

Q(my, my) = O{F(m,m,)} (7.1-3)

by a linear spatial combination of pixels within a neighborhood of (m,, m,). From
the sifting summation of Eq. 7.1-1,

O(m, my) = O{ZZ F(ny,ny)0(m;—n; +1,my—n,+ 1)} (7.1-4a)

non

or

O(my, my) = Z z F(ny,ny))0{8(m;—n; +1,my—n,+1)} (7.1-4b)

ny

recognizing that O{-} is a linear operator and that F(n, n,) in the summation of
Eq. 7.1-4a is a constant in the sense that it does not depend on (m,, m,). The term
0{8(t},1,)} for t;, = m;—n;+1 is the response at output coordinate (m,m,) to a
unit amplitude input at coordinate (n,, n,) . It is called the impulse response function
array of the linear operator and is written as

S(my—ny+1,my—ny+1; my,my) = 0{8(¢},1,)} for 1<1,,1,<L (7.1-5)

and is zero otherwise. For notational simplicity, the impulse response array is con-
sidered to be square.

In Eq. 7.1-5 it is assumed that the impulse response array is of limited spatial
extent. This means that an output image pixel is influenced by input image pixels
only within some finite area L x L neighborhood of the corresponding output image
pixel. The output coordinates (m,, m,) in Eq. 7.1-5 following the semicolon indicate
that in the general case, called finite area superposition, the impulse response array
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FIGURE 7.1-1. Relationships between input data, output data and impulse response arrays
for finite-area superposition; upper left corner justified array definition.

can change form for each point (m, m,) in the processed array Q(m,, m,). Follow-
ing this nomenclature, the finite area superposition operation is defined as

O(my, m,) = zz F(n,ny)H(m;—n +1,my—n,+1; m, my) (7.1-6)

ny

The limits of the summation are

MAX{ 1, m;—~L+ 1} <n; < MIN{N, m,} (7.1-7)

where MAX{a, b} and MIN{q, b} denote the maximum and minimum of the argu-
ments, respectively. Examination of the indices of the impulse response array at its
extreme positions indicates that M = N + L - 1, and hence the processed output array
Q is of larger dimension than the input array F. Figure 7.1-1 illustrates the geometry
of finite-area superposition. If the impulse response array H is spatially invariant, the
superposition operation reduces to the convolution operation.

O(m,m,) = zz F(ny,ny)H(m;—ny+1,my—n,+1) (7.1-8)

ny

Figure 7.1-2 presents a graphical example of convolution with a 3x3 impulse
response array.

Equation 7.1-6 expresses the finite-area superposition operation in left-justified
form in which the input and output arrays are aligned at their upper left corners. It
is often notationally convenient to utilize a definition in which the output array is
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FIGURE 7.1-2. Graphical example of finite-area convolution with a 3 X 3 impulse response
array; upper left corner justified array definition.

centered with respect to the input array. This definition of centered superposition is
given by

Qi) = XY F(ny,ny)H(y—ny + Lo jy=ny+ L jys Jn) (7.1-9)

ny

where —(L-3)/2<j,<N+(L-1)/2 and L, = (L+1)/2. The limits of the summa-
tion are

MAX{1,j,—(L—1)/2} <n; <MIN{N, j; + (L—1)/2} (7.1-10)

Figure 7.1-3 shows the spatial relationships between the arrays F, H and Q,. for cen-
tered superposition with a 5 x5 impulse response array.

In digital computers and digital image processors, it is often convenient to restrict
the input and output arrays to be of the same dimension. For such systems, Eq. 7.1-9
needs only to be evaluated over the range 1<, <N. When the impulse response
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FIGURE 7.1-3. Relationships between input data, output data and impulse response arrays
for finite-area superposition; centered array definition.

array is located on the border of the input array, the product computation of Eq.
7.1-9 does not involve all of the elements of the impulse response array. This situa-
tion is illustrated in Figure 7.1-3, where the impulse response array is in the upper
left corner of the input array. The input array pixels “missing” from the computation
are shown crosshatched in Figure 7.1-3. Several methods have been proposed to deal
with this border effect. One method is to perform the computation of all of the
impulse response elements as if the missing pixels are of some constant value. If the
constant value is zero, the result is called centered, zero padded superposition. A
variant of this method is to regard the missing pixels to be mirror images of the input
array pixels, as indicated in the lower left corner of Figure 7.1-3. In this case, the
centered, reflected boundary superposition definition becomes

0.(jppjp) = XY F(ny, my)H(ji=ny+Le,jy=ny+ L ji,js)
ny ny

(7.1-11)

where the summation limits are

Ji—(L=1)/2<n,<j +(L-1)/2 (7.1-12)
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and

2-n; for n,<0 (7.1-13a)
ni=3n for 1<n,<N (7.1-13b)
2N -n; for n;>N (7.1-13¢)

In many implementations, the superposition computation is limited to the range
(L+1)/2<j,<N-(L-1)/2, and the border elements of the N x N array Q.. are set
to zero. In effect, the superposition operation is computed only when the impulse
response array is fully embedded within the confines of the input array. This region
is described by the dashed lines in Figure 7.1-3. This form of superposition is called
centered, zero boundary superposition.

If the impulse response array H is spatially invariant, the centered definition for
convolution becomes

0 ipiy) =3 S Fnyny)H(y—ny+Ljy—ny+L,) (7.1-14)

ny g

The 3 x3 impulse response array, which is called a small generating kernel (SGK),
is fundamental to many image processing algorithms (1). When the SGK is totally
embedded within the input data array, the general term of the centered convolution
operation can be expressed explicitly as

Q.(Jp) = HB,3)F(, -1, j,-1)+HG,2)F(j - 1,j,) +HG3, DF(j - 1,j,+ 1)
+H(2,3)F(j,j,— D)+ H(2,2)F(j,j,) + H2, DF(j,j, + 1)
+H(L3)F(,+1,j,-1)+H(1,2)F(j +1,j,) +H(l, )F(j; + 1,j,+ 1)

(7.1-15)

for 2<j,<N-1 .In Chapter 9, it will be shown that convolution with arbitrary-size
impulse response arrays can be achieved by sequential convolutions with SGKs.

The four different forms of superposition and convolution are each useful in vari-
ous image processing applications. The upper left corner—justified definition is
appropriate for computing the correlation function between two images. The cen-
tered, zero padded and centered, reflected boundary definitions are generally
employed for image enhancement filtering. Finally, the centered, zero boundary def-
inition is used for the computation of spatial derivatives in edge detection. In this
application, the derivatives are not meaningful in the border region.
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0.360 0.480 0.600 0.600 0.600 0.600 0.600 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.480 0.640 0.800 0.800 0.800 0.800 0.800 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.600 0.800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.600 0.800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.600 0.800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.600 0.800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.600 0.800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(c) Centered, zero padded (d) Centered, reflected

FIGURE 7.1-4 Finite-area convolution boundary conditions, upper left corner of convolved
image.

Figure 7.1-4 shows computer printouts of pixels in the upper left corner of a
convolved image for the four types of convolution boundary conditions. In this
example, the source image is constant of maximum value 1.0. The convolution
impulse response array is a 5 x5 uniform array.

7.1.2. Finite-Area Superposition and Convolution: Vector-Space Formulation

If the arrays F and Q of Eq. 7.1-6 are represented in vector form by the N*x 1 vector
fand the M* x 1 vector q, respectively, the finite-area superposition operation can be
written as (2)

q = Df (7.1-16)

where D is a M x N> matrix containing the elements of the impulse response. It is
convenient to partition the superposition operator matrix D into submatrices of
dimension M x N . Observing the summation limits of Eq. 7.1-7, it is seen that

‘D, 0o . o |
D,; Dy,
: : 0
b=1/p,, D, Dy _riin (7.1-17)
0 DL+l,1 .
0 w0 Dy
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11 12 13 :
H=|21 22 23 D=| - —_=_ T
31 32 33 I

(a) (b)

FIGURE 7.1-5 Finite-area convolution operators: (a) general impulse array, M =4, N =2,
L = 3; (b) Gaussian-shaped impulse array, M = 16, N=8, L =9.

The general nonzero term of D is then given by

sz,nz(ml’nl) = H(m —ny+1,my—ny+1; my,m,) (7.1-18)

Thus, it is observed that D is highly structured and quite sparse, with the center band
of submatrices containing stripes of zero-valued elements.

If the impulse response is position invariant, the structure of D does not depend
explicitly on the output array coordinate (m,, m,) . Also,

(7.1-19)

myn, Dm2+ Ln,+1

As a result, the columns of D are shifted versions of the first column. Under these
conditions, the finite-area superposition operator is known as the finite-area con-
volution operator. Figure 7.1-5a contains a notational example of the finite-area
convolution operator for a 2x2 (N = 2) input data array, a 4 x4 (M = 4) output
data array and a 3x3 (L = 3) impulse response array. The integer pairs (i, j) at
each element of D represent the element (7, j) of H(i,j) . The basic structure of D
can be seen more clearly in the larger matrix depicted in Figure 7.1-5b. In this
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example, M = 16, N = §, L = 9, and the impulse response has a symmetrical
Gaussian shape. Note that D is a 256 x 64 matrix in this example.

Following the same technique as that leading to Eq. 6.2-7, the matrix form of the
superposition operator may be written as

M N
Q=Y ¥ D, Fvu, (7.1-20)
If the impulse response is spatially invariant and is of separable form such that

H = h.hy (7.1-21)

where h, and h are column vectors representing row and column impulse responses,
respectively, then

D =D.®D, (7.1-22)

The matrices D, and D are M x N matrices of the form

he(ly 0 .0
he(2) hp(1)
he(3) he2) ... 0
D, =| (1) (7.1-23)
hg(L) :
0
0 ... 0 hyd

The two-dimensional convolution operation may then be computed by sequential
row and column one-dimensional convolutions. Thus

Q = D_FD; (7.1-24)

In vector form, the general finite-area superposition or convolution operator requires
N°L? operations if the zero-valued multiplications of D are avoided. The separable
operator of Eq. 7.1-24 can be computed with only NL(M + N) operations.



174  SUPERPOSITION AND CONVOLUTION
7.2. SAMPLED IMAGE SUPERPOSITION AND CONVOLUTION

Many applications in image processing require a discretization of the superposition
integral relating the input and output continuous fields of a linear system. For exam-
ple, image blurring by an optical system, sampling with a finite-area aperture or
imaging through atmospheric turbulence, may be modeled by the superposition inte-
gral equation

G(x,y) = f:f: F(o, B)T(x,y; 0, B) do. dp (7.2-1a)

where F (x,y) and f}(x, y) denote the input and output fields of a linear system,
respectively, and the kernel J(x, y; o) represents the impulse response of the linear
system model. In this chapter, a tilde over a variable indicates that the spatial indices
of the variable are bipolar; that is, they range from negative to positive spatial limits.
In this formulation, the impulse response may change form as a function of its four
indices: the input and output coordinates. If the linear system is space invariant, the
output image field may be described by the convolution integral

G(x,y) = jj;j: F (o, B)J(x—a,y—B) do dp (7.2-1b)

For discrete processing, physical image sampling will be performed on the output
image field. Numerical representation of the integral must also be performed in
order to relate the physical samples of the output field to points on the input field.

Numerical representation of a superposition or convolution integral is an impor-
tant topic because improper representations may lead to gross modeling errors or
numerical instability in an image processing application. Also, selection of a numer-
ical representation algorithm usually has a significant impact on digital processing
computational requirements.

As a first step in the discretization of the superposition integral, the output image
field is physically sampled by a (2J+ 1) x (2J + 1) array of Dirac pulses at a resolu-
tion AS to obtain an array whose general term is

G(j, AS, j, AS) = G(x,y)8(x—j, AS,y—j, AS) (7.2-2)

where —J <j, <J. Equal horizontal and vertical spacing of sample pulses is assumed
for notational simplicity. The effect of finite area sample pulses can easily be incor-
porated by replacing the impulse response with J(x,y; o, B) ® P(~x,~y) , where
P(—x,~y) represents the pulse shape of the sampling pulse. The delta function may
be brought under the integral sign of the superposition integral of Eq. 7.2-1a to give

G(j, AS, j, AS) = j:j:ﬁ(a, B)J(j, AS, j, AS; o, B) doudf  (7.2-3)



SAMPLED IMAGE SUPERPOSITION AND CONVOLUTION 175

It should be noted that the physical sampling is performed on the observed image
spatial variables (x, y); physical sampling does not affect the dummy variables of
integration (o, B) .

Next, the impulse response must be truncated to some spatial bounds. Thus, let

Jey; o B) = 0 (7.2-4)
for |x| >T and |y| > T. Then,

J1IAS+T (jr,AS+T

G(j, AS, j, AS) = j F(0, B) J(j, AS, j, AS; o, B) doe B (7.2-5)

jAS-T -[jzAS—T

Truncation of the impulse response is equivalent to multiplying the impulse
response by a window function V(x, y), which is unity for x| < 7 and |y| < T and zero
elsewhere. By the Fourier convolution theorem, the Fourier spectrum of G(x, y) is
equivalently convolved with the Fourier transform of V(x, y), which is a two-dimen-
sional sinc function. This distortion of the Fourier spectrum of G(x, y) results in the
introduction of high-spatial-frequency artifacts (a Gibbs phenomenon) at spatial fre-
quency multiples of 2n/T. Truncation distortion can be reduced by using a shaped
window, such as the Bartlett, Blackman, Hamming or Hanning windows (3), which
smooth the sharp cutoff effects of a rectangular window. This step is especially
important for image restoration modeling because ill-conditioning of the superposi-
tion operator may lead to severe amplification of the truncation artifacts.

In the next step of the discrete representation, the continuous ideal image array
F(a, B) is represented by mesh points on a rectangular grid of resolution Al and
dimension (2K + 1) x (2K + 1) . This is not a physical sampling process, but merely
an abstract numerical representation whose general term is described by

F(k, ALky AI) = F(o, B)3(0.—k; AL 0. —k, Al) (7.2-6)

where K, <k;<K,;, with K, and K;; denoting the upper and lower index limits.

If the ultimate objective is to estimate the continuous ideal image field by pro-
cessing the physical observation samples, the mesh spacing Al should be fine
enough to satisfy the Nyquist criterion for the ideal image. That is, if the spectrum of
the ideal image is bandlimited and the limits are known, the mesh spacing should be
set at the corresponding Nyquist spacing. Ideally, this will permit perfect interpola-
tion of the estimated points 1~V(k1 Al k, Al to reconstruct F(x,).

The continuous integration of Eq. 7.2-5 can now be approximated by a discrete
summation by employing a quadrature integration formula (4). The physical image
samples may then be expressed as

Ky Ku
Gy AS j, AS) = 2 2 fv(klAI, ky Ami/(kl,kz)}(jl AS,jy AS;ky ALky AD)

k=KL =Ky
(7.2-7)
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where W(kl,kz) is a weighting coefficient for the particular quadrature formula
employed. Usually, a rectangular quadrature formula is used, and the weighting
coefficients are unity. In any case, it is notationally convenient to lump the weight-
ing coefficient and the impulse response function together so that

H(j, AS, jy AS; ky ALky Al) = W(k,, ky)J(j, AS, j, AS: k AL ky A (7.2-8)

Then,

Kll/ KZU
GG\ AS,j, A9 =YY Fky AL ky ADH(y AS, j, AS; ky AL ky Al)

ky =Ky ky =Ky, (7.2.9)

Again, it should be noted that H is not spatially discretized; the function is simply
evaluated at its appropriate spatial argument. The limits of summation of Eq. 7.2-9 are

N

K., = —_— K. = S

iL [J’AI AI}N iv [J’AIJ'AI

where [ -]y denotes the nearest integer value of the argument.

_ Figure 7.2-1 provides an example relating actual physical sample values
G(j, AS, j, AS) to mesh points F(k, Al k, AI) on the ideal image field. In this exam-
ple, the mesh spacing is twice as large as the physical sample spacing. In the figure,

Q-

FikAa1,0) o
o= "\\ 27N T o /_ 2,0)
T M T T
Ss-43-2 - o 2 3 45 °
\ﬁ — | ! 1
—w AT wo—
P -
L

|
il

N - ,
i:"\ o, ./_er: a,B) R -:;’ o
N __‘._O I _E
\‘\:ﬁ' 1 L
v e L”-—)
\:"";ﬂb‘-_\ | .o
N - ;\I
- F R i
ey (2]
™ ~ Tm _\'. =
- 2T —a = = 1 ©
» L =

FIGURE 7.2-1. Relationship of physical image samples to mesh points on an ideal image
field for numerical representation of a superposition integral.
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IDEAL IMAGE
FIELD

— PHYSICAL
IMAGE SAMPLE
REGION

MESH POINT
REGION

FIGURE 7.2-2. Relationship between regions of physical samples and mesh points for
numerical representation of a superposition integral.

the values of the impulse response function that are utilized in the summation of
Eq. 7.2-9 are represented as dots.

An important observation should be made about the discrete model of Eq. 7.2-9
for a sampled superposition integral; the physical area of the ideal image field
F(x,y) containing mesh points contributing to physical image samples is larger than
the sample image G(j 1 AS, j, AS) regardless of the relative number of physical sam-
ples and mesh points. The dimensions of the two image fields, as shown in Figure
7.2-2, are related by

JAS+T = K AI (7.2-11)

to within an accuracy of one sample spacing.

At this point in the discussion, a discrete and finite model for the sampled super-
position integral has been obtained in which the physical samples G(j | AS, j, AS) are
related to points on an ideal image field IE(k1 AL k, AI) by a discrete mathematical
superposition operation. This discrete superposition is an approximation to continu-
ous superposition because of the truncation of the impulse response function
}(x, y; 0, B) and quadrature integration. The truncation approximation can, of
course, be made arbitrarily small by extending the bounds of definition of the
impulse response, but at the expense of large dimensionality. Also, the quadrature
integration approximation can be improved by use of complicated formulas of
quadrature, but again the price paid is computational complexity. It should be noted,
however, that discrete superposition is a perfect approximation to continuous super-
position if the spatial functions of Eq. 7.2-1 are all bandlimited and the physical
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sampling and numerical representation periods are selected to be the corresponding
Nyquist period (5).

It is often convenient to reformulate Eq. 7.2-9 into vector-space form. Toward
this end, the arrays G and F are reindexed to Mx M and Nx N arrays, respectively,
such that all indices are positive. Let

F(n, Alny AI) = F(k, Al ky Al (7.2-12a)

where n; = k;+ K+ 1 and let

G(m, AS,m,y AS) = G(j, AS, j, AS) (7.2-12b)

where m; = j,+J+ 1. Also, let the impulse response be redefined such that

H(m, AS, m, AS; n, AL ny AI) = H(j, AS, j, AS; k ALk, AI)  (7.2-12¢)

Figure 7.2-3 illustrates the geometrical relationship between these functions.
The discrete superposition relationship of Eq. 7.2-9 for the shifted arrays
becomes

N]U N2U
G(my AS,m, AS) = z z F(n; AL ny AI)H(m AS,my AS;n, Al, ny Al)

ny =Ny ny =Ny

(7.2-13)

for (1<m;<M) where

AS AS 2T
Ma = [z ], N = 7 + 57,

Following the techniques outlined in Chapter 6, the vectors g and f may be formed
by column scanning the matrices G and F to obtain

g = Bf (7.2-14)
where B is a M* x N* matrix of the form

B, B ,.. By, 0~ 0

0 B
B = ] 2,2 (7.2-15)

0 .. 0By ;.1 - Byy
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| n, —= N,
I | my,—= Y M,
n |
l my | £5= y Ly
‘ ‘4
— —X X J x
Ly
1< 4<L
M, lg.észz
Ny Ism <M, (c) H(l.hy)
I=n =N, 1< m, <Mp
(a) Fny.m) 1Snp<N2 (b) G(my.m3y) 2
FIGURE 7.2-3. Sampled image arrays.
The general term of B is defined as
Bmz,nz(ml’nl) = H(m; AS,m, AS; n; Al n, AI) (7.2-16)

for 1<m;<M and m;<n;<m;+L-1 where L = [2T/AIl], represents the nearest
odd integer dimension of the impulse response in resolution units A/ . For descrip-
tional simplicity, B is called the blur matrix of the superposition integral.

If the impulse response function is translation invariant such that

H(my AS,my AS;n AL ny AI) = H(m AS—n; Al my AS—n, AI) ~ (7.2-17)
then the discrete superposition operation of Eq. 7.2-13 becomes a discrete convolu-
tion operation of the form

NlU NZU
G(m AS, m, AS) = z 2 F(ny Al ny A)H(m AS —n; Al, my AS —n, Al)

ny =Ny ny =Ny,

(7.2-18)

If the physical sample and quadrature mesh spacings are equal, the general term
of the blur matrix assumes the form

B, ,.(myn) = Him —n +Lmy—ny+L) (7.2-19)

In Eq. 7.2-19, the mesh spacing variable AI is understood. In addition,

- B (7.2-20)

My, Ny my+1,n,+1
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11 12 13
H=|21 22 23
L31 32 33

0 0 O 0,33 283 13 0,32 22 12 O :31 21 11 0
| |
L O O O 050 33 23 131 0 32 22 1210 31 21 11

(b)

FIGURE 7.2-4. Sampled infinite area convolution operators: (@) General impulse array,
M =2,N=4,L =3, (b) Gaussian-shaped impulse array, M = 8, N=16, L =9.

Consequently, the rows of B are shifted versions of the first row. The operator B then
becomes a sampled infinite area convolution operator, and the series form represen-
tation of Eq. 7.2-19 reduces to

m+L-1my+L-1
G(m, AS, m, AS) = Z Z F(ny,ny)H(m, —n;+L my—ny,+L) (7.2-21)

nyp=myp ny =y

where the sampling spacing is understood.

Figure 7.2-4a is a notational example of the sampled image convolution operator
for a 4x4 (N = 4) data array, a 2x2 (M = 2) filtered data array, and a 3x3
(L = 3) impulse response array. An extension to larger dimension is shown in Figure
7.2-4Db for M = 8, N= 16, L =9 and a Gaussian-shaped impulse response.

When the impulse response is spatially invariant and orthogonally separable,

B = B.®B, (7.2-22)
where B, and B are M x N matrices of the form

he(L) — he(L=1) = he(l) 0 = 0
B,=| hg(L) : (7.2-23)

0 0 hy(L) o (1)
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The two-dimensional convolution operation then reduces to sequential row and col-
umn convolutions of the matrix form of the image array. Thus

G = B_FB,, (7.2-24)

The superposition or convolution operator expressed in vector form requires ML’
operations if the zero multiplications of B are avoided. A separable convolution
operator can be computed in matrix form with only ML(M + N) operations.

7.3. CIRCULANT SUPERPOSITION AND CONVOLUTION

In circulant superposition (2), the input data, the processed output and the impulse
response arrays are all assumed spatially periodic over a common period. To unify
the presentation, these arrays will be defined in terms of the spatially limited arrays
considered previously. First, let the Nx N data array F(n,,n,) be embedded in the
upper left corner of a Jx J array (J>N) of zeros, giving

F(n,n,) for 1<n;<N (7.3-1a)
Fp(ng,n,y) =

0 for N+ 1<n,<J (7.3-1b)

In a similar manner, an extended impulse response array is created by embedding
the spatially limited impulse array in a J x J matrix of zeros. Thus, let

H(ly, 1y; my, my) for 1<1,<L (7.3-2a)
Hp(ly, ly;my,my) =

0 for L+1<1,<J (7.3-2b)

Periodic arrays Fp(n, n,) and Hg(l,,l,; m, m,) are now formed by replicating the
extended arrays over the spatial period J. Then, the circulant superposition of these
functions is defined as

J J
Kg(my, m,y) = Z Z Fpn,ny)Hpg(m;—n+1,my—n,+1; m, my)
n=1 n=1

(7.3-3)
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Similarity of this equation with Eq. 7.1-6 describing finite-area superposition is evi-
dent. In fact, if J is chosen such that / = N + L — 1, the terms Fy(n,, n,) = F(n, n,)
for 1<n;<N. The similarity of the circulant superposition operation and the sam-
pled image superposition operation should also be noted. These relations become
clearer in the vector-space representation of the circulant superposition operation.

Let the arrays Fp and K be expressed in vector form as the J~ x 1 vectors fg and
kg, respectively. Then, the circulant superposition operator can be written as

k, = Cf, (7.3-4)

where C is a J>xJ° matrix containing elements of the array Hg. The circulant
superposition operator can then be conveniently expressed in terms of JxJ subma-
trices C,,,,, as given by

Cip 0 0 - 0 Cispva- Ciy
C2,1 Cz,z 0 - 0 0
0 CL—l,./
C = Cz,l CL,z 0 0
0 CL+l 2
0
0 .. 0C C .. C
L J,J-L+1 ~J,J-L+2 LT (7.3_5)
where
sz, nz(ml’nl) = Hp(ky, ky; my, m,) (7.3-6)

for 1<n;<J and 1<m;<J with k; = (m;—n;+ 1) modulo J and Hg(0, 0) = 0. It
should be noted that each row and column of C contains L nonzero submatrices. If
the impulse response array is spatially invariant, then

(7.3-7)

My, ny sz+ 1,n,+1

and the submatrices of the rows (columns) can be obtained by a circular shift of the
first row (column). Figure 7.3-la illustrates the circulant convolution operator for
16 x 16 (J =4) data and filtered data arrays and for a 3 x 3 (L = 3) impulse response
array. In Figure 7.3-1b, the operator is shown for J = 16 and L = 9 with a Gaussian-
shaped impulse response.
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11 12 13
H=|21 22 23
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|0 31[21 11] 0 0| 0 0103323 1310322 12
12 0[82 22|11 0|31 211 0 0 0113 0 33 23
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FIGURE 7.3-1. Circulant convolution operators: (@) General impulse array, J =4, L = 3;

(b)

(b) Gaussian-shaped impulse array, J = 16, L =9.
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Finally, when the impulse response is spatially invariant and orthogonally sepa-
rable,

C=C.®C, (7.3-8)

where C, and C,. are JxJ matrices of the form

hp(1) 0 o 0 hp(L) ... hp(3) he(2)
he(2)  hp(l) ... 0 0 L hp(3)
Cp = he(L—1) a0 hp(L)
hp(L)  he(L—1) 0
0 hg(L) :
: 0
0 0 hp(L) - - hp(2) he(l
L r(L) r(2) hp(1) (7.3-9)
Two-dimensional circulant convolution may then be computed as
K, = C.F,Cph (7.3-10)

7.4. SUPERPOSITION AND CONVOLUTION OPERATOR RELATIONSHIPS

The elements of the finite-area superposition operator D and the elements of the
sampled image superposition operator B can be extracted from circulant superposi-
tion operator C by use of selection matrices defined as (2)

s19 = [IK‘ 0] (7.4-1a)
52/ = 0,14/ 0 (7.4-1b)

where Sl(JK) and SZSK) are K xJ matrices, Ixis a Kx K identity matrix and 0, is a
KxL-1 matrix. For future reference, it should be noted that the generalized
inverses of S1 and S2 and their transposes are
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(5197 = 519" (7.4-2a)
(s10)"] = s1¥ (7.4-2b)
(8291 = 520" (7.4-2¢)
(5207 = s2F (7.4-2d)

Examination of the structure of the various superposition operators indicates that

D = 819 @ 51151 @ 519" (7.4-3a)
B = (52 @52 c(s1V @511 (7.4-3b)

That is, the matrix D is obtained by extracting the first M rows and N columns of sub-
matrices C,,,, of C. The first M rows and N columns of each submatrix are also
extracted. A similar explanation holds for the extraction of B from C. In Figure 7.3-1,
the elements of C to be extracted to form D and B are indicated by boxes.

From the definition of the extended input data array of Eq. 7.3-1, it is obvious
that the spatially limited input data vector f can be obtained from the extended data
vector f; by the selection operation

=51 es1t, (7.4-4a)
and furthermore,
£, = 51V @81V (7.4-4b)

It can also be shown that the output vector for finite-area superposition can be
obtained from the output vector for circulant superposition by the selection operation

q = st @811k, (7.4-52)

The inverse relationship also exists in the form

k, = 1519 @819)"q (7.4-5b)
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For sampled image superposition

g = (520" @ 82"k (7.4-6)

but it is not possible to obtain kg from g because of the underdeterminacy of the
sampled image superposition operator. Expressing both q and kg of Eq. 7.4-5a in
matrix form leads to

M J

Q=Y Y M, s15"©s1"INK,v,u, (7.4-7)

m=1 n=1

As a result of the separability of the selection operator, Eq. 7.4-7 reduces to

Q = (511K (510" (7.4-8)
Similarly, for Eq. 7.4-6 describing sampled infinite-area superposition,

G = (521K (520" (7.4-9)

Figure 7.4-1 illustrates the locations of the elements of G and Q extracted from K
for finite-area and sampled infinite-area superposition.

In summary, it has been shown that the output data vectors for either finite-area
or sampled image superposition can be obtained by a simple selection operation on
the output data vector of circulant superposition. Computational advantages that can
be realized from this result are considered in Chapter 9.

FIGURE 7.4-1. Location of elements of processed data Q and G from Kp.
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UNITARY TRANSFORMS

Two-dimensional unitary transforms have found two major applications in image
processing. Transforms have been utilized to extract features from images. For
example, with the Fourier transform, the average value or dc term is proportional to
the average image amplitude, and the high-frequency terms (ac term) give an indica-
tion of the amplitude and orientation of edges within an image. Dimensionality
reduction in computation is a second image processing application. Stated simply,
those transform coefficients that are small may be excluded from processing opera-
tions, such as filtering, without much loss in processing accuracy. Another applica-
tion in the field of image coding is transform image coding, in which a bandwidth
reduction is achieved by discarding or grossly quantizing low-magnitude transform
coefficients. In this chapter, consideration is given to the properties of unitary trans-
forms commonly used in image processing.

8.1. GENERAL UNITARY TRANSFORMS

A unitary transform is a specific type of linear transformation in which the basic
linear operation of Eq. 6.2-1 is exactly invertible and the operator kernel satisfies
certain orthogonality conditions (1,2). The forward unitary transform of the N| x N,
image array F(n,, n,) resultsina N, x N, transformed image array as defined by

Nl NZ
Fmy,my) = z z F(ny, ny)A(n;, ny;my, m,) (8.1-1)

nm=1 n,=1

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
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where A(n,n,: m,m,) represents the forward transform kernel. A reverse or
inverse transformation provides a mapping from the transform domain to the image
space as given by

Nl N2
F(ny,n,) = z z Fmy, my)B(n, ny; my, m,) (8.1-2)

mi=1 m,=1

where B(n,, n,; m, m,) denotes the inverse transform kernel. The transformation is
unitary if the following orthonormality conditions are met:

ZZA(nl’ Ny my, mz)A*(jlyj2§ my, mz) = 8("1 —jly ny _jz) (8.1-3a)
ny
ZZB(”p nys my, mz)B*(jlyj2§ my, my) = 8("1 —J1> 2 =J») (8.1-3b)
my ny

ZZA(nl,nz; my, my)A*(ny, nys ky,ky) = 8(m —ky, my—ky) (8.1-3¢)

ny

z ZB(nl, nysmy, my)B¥(ny, nys ky, ky) = 8(my —ky, my—ky) (8.1-3d)

ny 1y

The transformation is said to be separable if its kernels can be written in the form
A(ny, nys my,my) = Ap(ng, m)Ag(n,, m,) (8.1-4a)

B(ny,ny; my, my) = Be(ny, m;)Bg(n,y, my) (8.1-4b)

where the kernel subscripts indicate row and column one-dimensional transform
operations. A separable two-dimensional unitary transform can be computed in two
steps. First, a one-dimensional transform is taken along each column of the image,
yielding

Ny
P(my, n,) = z F(ny,ny)As(ng, mp) (8.1-5)

n=1

Next, a second one-dimensional unitary transform is taken along each row of P(m,, n,),
giving
NZ
F(my,m,) = z P(my, ny)Agx(n,y, m,) (8.1-6)

ny,=1
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Unitary transforms can conveniently be expressed in vector-space form (3). Let F
and f denote the matrix and vector representations of an image array, and let F and
S be the matrix and vector forms of the transformed image. Then, the two-dimen-
sional unitary transform written in vector form is given by

f=Af (8.1-7)
where A is the forward transformation matrix. The reverse transform is
f = Bf (8.1-8)
where B represents the inverse transformation matrix. It is obvious then that
B=A (8.1-9)
For a unitary transformation, the matrix inverse is given by
= A% (8.1-10)

and A is said to be a unitary matrix. A real unitary matrix is called an orthogonal
matrix. For such a matrix,

A=A (8.1-11)
If the transform kernels are separable such that

A=A ®A, (8.1-12)

where A, and A, are row and column unitary transform matrices, then the trans-
formed image matrix can be obtained from the image matrix by

F = A.FA; (8.1-13a)
The inverse transformation is given by
F = B.FB}, (8.1-13b)

-1 -1
where B, = A and By = A, .
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Separable unitary transforms can also be expressed in a hybrid series—vector
space form as a sum of vector outer products. Let a-(n,) and ay(n,) represent rows
n; and n, of the unitary matrices Ag and Ag, respectively. Then, it is easily verified
that

N, N,
F= 3 3 Funyacn)ag(ny) (8.1-14a)
n=1 n,=1
Similarly,
N, N,
F=3 F(my, my)bc(my)bp(my) (8.1-14b)
my=1 m,=1

where b (m;) and by(m,) denote rows m; and m, of the unitary matrices B and
Bp, respectively. The vector outer products of Eq. 8.1-14 form a series of matrices,
called basis matrices, that provide matrix decompositions of the image matrix F or
its unitary transformation F.

There are several ways in which a unitary transformation may be viewed. An
image transformation can be interpreted as a decomposition of the image data into a
generalized two-dimensional spectrum (4). Each spectral component in the trans-
form domain corresponds to the amount of energy of the spectral function within the
original image. In this context, the concept of frequency may now be generalized to
include transformations by functions other than sine and cosine waveforms. This
type of generalized spectral analysis is useful in the investigation of specific decom-
positions that are best suited for particular classes of images. Another way to visual-
ize an image transformation is to consider the transformation as a multidimensional
rotation of coordinates. One of the major properties of a unitary transformation is
that measure is preserved. For example, the mean-square difference between two
images is equal to the mean-square difference between the unitary transforms of the
images. A third approach to the visualization of image transformation is to consider
Eq. 8.1-2 as a means of synthesizing an image with a set of two-dimensional mathe-
matical functions B(n,, n,; m, m,) for a fixed transform domain coordinate (m, m,).
In this interpretation, the kernel B(n, n,;m, m,) is called a two-dimensional basis
function and the transform coefficient #(m,, m,) is the amplitude of the basis function
required in the synthesis of the image.

In the remainder of this chapter, to simplify the analysis of two-dimensional uni-
tary transforms, all image arrays are considered square of dimension N. Further-
more, when expressing transformation operations in series form, as in Eqgs. 8.1-1
and 8.1-2, the indices are renumbered and renamed. Thus the input image array is
denoted by F(j, k) forj, k=0, 1, 2,..., N — 1, and the transformed image array is rep-
resented by Hu, v) for u, v=0, 1, 2,..., N — 1. With these definitions, the forward
unitary transform becomes
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N-1 N-1
Flu,v) = z z F(j, K)A(j, k; u, v) (8.1-15a)
j=0 k=0
and the inverse transform is
N-1 N-1
F(j k) = Z Z Hu, v)B(j, k;u, v) (8.1-15b)
u=0 v=0

8.2. FOURIER TRANSFORM

The discrete two-dimensional Fourier transform of an image array is defined in
series form as (5-10)

FHu,v) =

2=

N-1 N-1 .
Y Y FGkR exp{_?\;“(uj+vk)} (8.2-1a)
j=0 k=0

where i = /-1, and the discrete inverse transform is given by

N-1 N-1 )
F(j k) = 1% Y Y A exp{%(ujwk)} (8.2-1b)
u=0 v=0

The indices (i, v) are called the spatial frequencies of the transformation in analogy
with the continuous Fourier transform. It should be noted that Eq. 8.2-1 is not univer-
sally accepted by all authors; some prefer to place all scaling constants in the inverse
transform equation, while still others employ a reversal in the sign of the kernels.

Because the transform kernels are separable and symmetric, the two dimensional
transforms can be computed as sequential row and column one-dimensional trans-
forms. The basis functions of the transform are complex exponentials that may be
decomposed into sine and cosine components. The resulting Fourier transform pairs
then become

iy = emd 280 | = cos] 2w+ vio b isind 22 _
A, ku,v) = exp{ N (u]+vk)} cos{N(uj+vk)} zs1n{N(uj+vk)} (8.2-2a)

o = o] 2 e v ] 2 cos 2B N _
B(j, k;u,v) = exp{ i (u]+vk)} cos{N(u]+vk)}+zsm{N(u]+vk)} (8.2-2b)
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FIGURE 8.2-1 Fourier transform basis functions, N = 16.

Figure 8.2-1 shows plots of the sine and cosine components of the one-dimensional
Fourier basis functions for N = 16. It should be observed that the basis functions are
a rough approximation to continuous sinusoids only for low frequencies; in fact, the
highest-frequency basis function is a square wave. Also, there are obvious redundan-
cies between the sine and cosine components.

The Fourier transform plane possesses many interesting structural properties. The
spectral component at the origin of the Fourier domain

7(0,0) =

=2l

N-1 N-1
3 Y FGR (8.2-3)
j=0 k=0
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FIGURE 8.2-2. Periodic image and Fourier transform arrays.

is equal to N times the spatial average of the image plane. Making the substitutions
u=u+mN,v =v+nN in Eq. 8.2-1, where m and n are constants, results in

N-1 N-1 )
FatmN,v+nn) = L '20 kzOF(j, k) eXP{_i]n’(uﬁ vk)}exp{—zni(mjmk)}
oy

(8.2-4)

For all integer values of m and n, the second exponential term of Eq. 8.2-5 assumes a
value of unity, and the transform domain is found to be periodic. Thus, as shown in
Figure 8.2-2a,

F(u+mN,v+nN) = F(u,v) (8.2-5)

for myn = 0,£1,+2, ...

The two-dimensional Fourier transform of an image is essentially a Fourier series
representation of a two-dimensional field. For the Fourier series representation to be
valid, the field must be periodic. Thus, as shown in Figure 8.2-2b, the original image
must be considered to be periodic horizontally and vertically. The right side of the
image therefore abuts the left side, and the top and bottom of the image are adjacent.
Spatial frequencies along the coordinate axes of the transform plane arise from these
transitions.

If the image array represents a luminance field, F(j, k) will be a real positive
function. However, its Fourier transform will, in general, be complex. Because the
transform domain contains 2N components, the real and imaginary, or phase and
magnitude components, of each coefficient, it might be thought that the Fourier
transformation causes an increase in dimensionality. This, however, is not the case
because #(u,v) exhibits a property of conjugate symmetry. From Eq. 8.2-4, with m
and n set to integer values, conjugation yields
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FIGURE 8.2-3. Fourier transform frequency domain.

P (u+mN, v+ nN) = 1%] Nil NilF(j, k) exp{‘?vm'(uj + vk)} (8.2-6)
j=0 k=0
By the substitution # = —u and v = —v it can be shown that
F(u,v) = F*(—u+mN,—v+nN) (8.2-7)
for n = 0,+1,£2, ... As a result of the conjugate symmetry property, almost one-

half of the transform domain samples are redundant; that is, they can be generated
from other transform samples. Figure 8.2-3 shows the transform plane with a set of
redundant components crosshatched. It is possible, of course, to choose the left half-
plane samples rather than the upper plane samples as the nonredundant set.

Figure 8.2-4 shows a monochrome test image and various versions of its Fourier
transform, as computed by Eq. 8.2-1a, where the test image has been scaled over
unit range 0.0 < F(j, k) < 1.0 . Because the dynamic range of transform components
is much larger than the exposure range of photographic film, it is necessary to com-
press the coefficient values to produce a useful display. Amplitude compression to a
unit range display array D(u, v) can be obtained by clipping large-magnitude values
according to the relation
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(a) Original (b) Clipped magnitude, nonordered

(c) Log magnitude, nonordered (d) Log magnitude, ordered

FIGURE 8.2-4. Fourier transform of the smpte_girl luma image.

D(u,v) = 1.0 if | Hu, v Zc|F,,,| (8.2-8a)
D(u, v) = ‘5“(; V) it [Fu )l <c[F]  (8.2-8b)
¢ max

where 0.0<c<1.0 is the clipping factor and |%,, | is the maximum coefficient
magnitude. Another form of amplitude compression is to take the logarithm of each

component as given by

log{a +b|F(u, v)|} (8.2-9)

Dlv) = elar DEE
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where a and b are scaling constants. Figure 8.2-4b is a clipped magnitude display of
the magnitude of the Fourier transform coefficients. Figure 8.2-4c¢ is a logarithmic
display for @ = 1.0 and b = 100.0.

In mathematical operations with continuous signals, the origin of the transform
domain is usually at its geometric center. Similarly, the Fraunhofer diffraction pat-
tern of a photographic transparency of transmittance F(x, y) produced by a coherent
optical system has its zero-frequency term at the center of its display. A computer-
generated two-dimensional discrete Fourier transform with its origin at its center can
be produced by a simple reordering of its transform coefficients. Alternatively, the
quadrants of the Fourier transform, as computed by Eq. 8.2-1a, can be reordered
automatically by multiplying the image function by the factor (—l)j Hh prior to the
Fourier transformation. The proof of this assertion follows from Eq. 8.2-4 with the
substitution m = n = 1. Then, by the identity

explin+k)} = (-1)*" (8.2-10)

Eq. 8.2-5 can be expressed as

Fu+N/2,v+N/2) =

==

N-1 N-1 ) .
> 2F(Lk)(—l)’*kexp{%Wﬂvk)}
j=0 k=0

(8.2-11)

Figure 8.2-4d contains a log magnitude display of the reordered Fourier compo-
nents. The conjugate symmetry in the Fourier domain is readily apparent from the
photograph.

The Fourier transform written in series form in Eq. 8.2-1 may be redefined in
vector-space form as

f = Af (8.2-12a)

f=Af (8.2-12b)

where f and f are vectors obtained by column scanning the matrices F and F,
respectively. The transformation matrix A can be written in direct product form as

A=A.®A, (8.2-13)
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where

w' o’ oW W

w wow L wN!
Ap = Ac = WO W2 ‘1/1/4 WZ(N—I)

WO . . W(N—l)'

L J (8.2-14)

with W = exp{-2mi/N}. As a result of the direct product decomposition of A, the
image matrix and transformed image matrix are related by

F = A.FA, (8.2-15a)

F = AZFA (8.2-15b)

The properties of the Fourier transform previously proved in series form obviously
hold in the matrix formulation.

One of the major contributions to the field of image processing was the discovery
(5) of an efficient computational algorithm for the discrete Fourier transform (DFT).
Brute-force computation of the discrete Fourier transform of a one-dimensional
sequence of N values requires on the order of N complex multiply and add opera-
tions. A fast Fourier transform (FFT) requires on the order of N log N operations.
For large images the computational savings are substantial. The original FFT algo-
rithms were limited to images whose dimensions are a power of 2 (e.g.,
N=2" =512 ). Modern algorithms exist for less restrictive image dimensions.

Although the Fourier transform possesses many desirable analytic properties, it
has a major drawback: Complex, rather than real number computations are neces-
sary. Also, for image coding it does not provide as efficient image energy compac-
tion as other transforms.

8.3. COSINE, SINE AND HARTLEY TRANSFORMS

The cosine, sine and Hartley transforms are unitary transforms that utilize sinusoidal
basis functions, as does the Fourier transform. The cosine and sine transforms are
not simply the cosine and sine parts of the Fourier transform. In fact, the cosine and
sine parts of the Fourier transform, individually, are not orthogonal functions. The
Hartley transform jointly utilizes sine and cosine basis functions, but its coefficients
are real numbers, as contrasted with the Fourier transform whose coefficients are, in
general, complex numbers.
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8.3.1. Cosine Transform

The cosine transform, discovered by Ahmed et al. (12), has found wide application
in transform image coding. In fact, it is the foundation of the JPEG standard (13) for
still image coding and the MPEG standard for the coding of moving images (14).
The forward cosine transform is defined as (12)

N-1 N-1
Fu,v) = ]%C(M)C(v) 3 S FG k)cos{]zc\-’[u(j+%)]}cos{%[v(k+%)]}

j=0 k=0

(8.3-1a)

F(, k) =

=1

N-1 N-1
ZO ZOC(M)C(V)?(M, V) cos {]%[u(j + %)]} cos {IF\-][V(k ¥ %)]}
(8.3-1b)

where C(0) = (2)71/2 and C(w) = 1 forw =1, 2,..., N — 1. It has been observed
that the basis functions of the cosine transform are actually a class of discrete Che-
byshev polynomials (12).

Figure 8.3-1 is a plot of the cosine transform basis functions for N = 16. A photo-
graph of the cosine transform of the test image of Figure 8.2-4a is shown in Figure
8.3-2a. The origin is placed in the upper left corner of the picture, consistent with
matrix notation. It should be observed that, as with the Fourier transform, the image
energy tends to concentrate toward the lower spatial frequencies.

The cosine transform of a N x N image can be computed by reflecting the image
about its edges to obtain a 2N x 2N array, taking the FFT of the array and then
extracting the real parts of the Fourier transform (15). Algorithms also exist for the
direct computation of each row or column of Eq. 8.3-1 with on the order of N log N
real arithmetic operations (12,16).

8.3.2. Sine Transform

The sine transform, introduced by Jain (17), as a fast algorithmic substitute for the
Karhunen—-Loeve transform of a Markov process is defined in one-dimensional form
by the basis functions

A(u,j) = /Nil Sin{(j+ 2&”; 1)“} (8.3-2)

foru,j=0,1,2,.., N- 1. Consider the tridiagonal matrix
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FIGURE 8.3-1. Cosine transform basis functions, N = 16.

1 —a 0 ... 0
-0 1 - C
T=| - - - . (8.3-3)
- 1 —-o
| 0 e 0 —a 1]

where o = p/(1+ pz) and 0.0<p<1.0 is the adjacent element correlation of a
Markov process covariance matrix. It can be shown (18) that the basis functions
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(a) Cosine

(b) Sine (c) Hartley

FIGURE 8.3-2. Cosine, sine and Hartley transforms of the smpte girl luma image, log
magnitude displays

of Eq. 8.3-2, inserted as the elements of a unitary matrix A, diagonalize the matrix T
in the sense that

ATA = D (8.3-4)

Matrix D is a diagonal matrix composed of the terms

2
D(k k) = 1-p - (8.3-5)
1-2pcos{kn/(N+1)} +p

for k=1, 2,..., N. Jain (17) has shown that the cosine and sine transforms are interre-
lated in that they diagonalize a family of tridiagonal matrices.
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FIGURE 8.3-3. Sine transform basis functions, N = 15.

The two-dimensional sine transform is defined as

N-1 N-1
_ 2 ; U+ D@+ D L J(k+ D(v+ Dw
ﬂ"’”‘ﬁi() kZOF(J’k)Sm{ N+l }Sm{ N+l }
j=0 k=

(8.3-6)

Its inverse is of identical form.

Sine transform basis functions are plotted in Figure 8.3-3 for N = 15. Figure
8.3-2b is a photograph of the sine transform of the test image. The sine transform
can also be computed directly from Eq. 8.3-10, or efficiently with a Fourier trans-
form algorithm (17).
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8.3.3. Hartley Transform

Bracewell (19,20) has proposed a discrete real-valued unitary transform, called the
Hartley transform, as a substitute for the Fourier transform in many filtering appli-
cations. The name derives from the continuous integral version introduced by Hart-
ley in 1942 (21). The discrete two-dimensional Hartley transform is defined by the
transform pair

N-1 N-1

Fu,v) = 1%] Y Y FG k)cas{ %‘(ujwk)} (8.3-7a)
j=0 k=0
N-1 N-1

FG, k) = 1% ;0 ZO F(u, v)cas{%(uj+vk)} (8.3-7b)

where cas® = cos8 + sin6 . The structural similarity between the Fourier and Hartley
transforms becomes evident when comparing Eq. 8.3-7 and Eq. 8.2-2.

It can be readily shown (17) that the cas  function is an orthogonal function.
Also, the Hartley transform possesses equivalent but not mathematically identical
structural properties of the discrete Fourier transform (20). Figure 8.3-2¢ is a photo-
graph of the Hartley transform of the test image.

The Hartley transform can be computed efficiently by a FFT-like algorithm (20).
The choice between the Fourier and Hartley transforms for a given application is
usually based on computational efficiency. In some computing structures, the Hart-
ley transform may be more efficiently computed, while in other computing environ-
ments, the Fourier transform may be computationally superior.

8.4. HADAMARD, HAAR AND DAUBECHIES TRANSFORMS

The Hadamard, Haar and Daubechies transforms are related members of a family of
nonsinusoidal transforms.

8.4.1. Hadamard Transform

The Hadamard transform (22,23) is based on the Hadamard matrix (24), which is a
square array of plus and minus ones whose rows and columns are orthogonal. A nor-
malized N x N Hadamard matrix satisfies the relation

HH =1 (8.4-1)

The smallest orthonormal Hadamard matrix is the 2 x2 Hadamard matrix given by

L1 1
H, = — 8.4-2
S L —J ( )
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Sign
Changes
11 [ 0
1 -1 1 =1 3
He=3l1 1 =1 =1 1
1 —1 -1 1 2
Sign
Changes
1 1 1 1o 1 1 1_‘ 0
1 =1 1 =11 1 =1 | I 7
1 1 i —II 4 =1 =i 3
WOENECE N RE SO
2./2| | 11 1!-1 = 1
1 I T (7 | (P, (R | 6
1 1 -1 —-1]-1 -1 1 1 2
_ 1 =1 =1 ll—l 1 1 -1 | 5

FIGURE 8.4-1. Nonordered Hadamard matrices of size 4 and 8.

It is known that if a Hadamard matrix of size N exists (N > 2), then N = 0 modulo 4
(22). The existence of a Hadamard matrix for every value of N satisfying this
requirement has not been shown, but constructions are available for nearly all per-
missible values of N up to 200. The simplest construction is for a Hadamard matrix
of size N =2n, where n is an integer. In this case, if H,, is a Hadamard matrix of size
N, the matrix

1

2

H2N

Hy Hy (8.4-3)
HN _HN

is a Hadamard matrix of size 2N. Figure 8.4-1 shows Hadamard matrices of size 4
and 8 obtained by the construction of Eq. 8.4-3.

Harmuth (25) has suggested a frequency interpretation for the Hadamard matrix
generated from the core matrix of Eq. 8.4-3; the number of sign changes along each
row of the Hadamard matrix divided by 2 is called the sequency of the row. It is pos-
sible to construct a Hadamard matrix of order N = 2" whose number of sign changes
per row increases from O to N — 1. This attribute is called the sequency property of the
unitary matrix.



206 UNITARY TRANSFORMS

WAVE
NUMEER, v

|‘|r7
19 - L_JI_
- N rn
0

f——— T T g g B
0 f |4l t—t gt T ¢
| ——

FIGURE 8.4-2. Hadamard transform basis functions, N = 16.

The rows of the Hadamard matrix of Eq. 8.4-3 can be considered to be samples of
rectangular waves with a subperiod of 1/N units. These continuous functions are
called Walsh functions (26). In this context, the Hadamard matrix merely performs
the decomposition of a function by a set of rectangular waveforms rather than the
sine—cosine waveforms with the Fourier transform. A series formulation exists for
the Hadamard transform (23).

Hadamard transform basis functions for the ordered transform with N = 16 are
shown in Figure 8.4-2. The ordered Hadamard transform of the test image in shown
in Figure 8.4-3a.
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(a) Hadamard

(b) Haar

FIGURE 8.4-3. Hadamard and Haar transforms of the smpte girl luma image, log

magnitude displays.

8.4.2. Haar Transform

The Haar transform (1,26,27) is derived from the Haar matrix. The following are
4 x4 and 8 x 8 orthonormal Haar matrices:

1 1 1 1

R (8.4-4)
202 =2 0 o0
0 0 2 -2
[ T T T SR SRS B B
11 1 1 -1 -1 -1 -1
S22 2-2-2 0 0 0 o0
Hy=-1| 0 0 0 0 .2 2-2-/ (8.4-5)
Bla 2 0 0 0o 0 0 o0
0 0 2 2 0 0 0 0
0 0 0 0 2 =2 0 0
L0 0 0 0 0 0 2 -2

Extensions to higher-order Haar matrices follow the structure indicated by Eqs. 8.4-4

and 8.4-5. Figure 8.4-4 is a plot of the Haar basis functions for N = 16.
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FIGURE 8.4-4. Haar transform basis functions, N = 16.

The Haar transform can be computed recursively (29) using the following N x N
recursion matrix

VN} (8.4-6)

where V, is a N/2xN scaling matrix and W, is a N/2xN wavelet matrix
defined as

1100000000

001100--0000
VN=71_- (8.4-7a)
2

0000001100

0000000011
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1 -1 0 0 0 0 0 0 0 0
1 0 0 1 -1 0 0 ... 0 0 0 0
W, = = : : (8.4-7b)
2 : '
0 0 0 0 0 1 -1 0 0
0 0 0 0 0 0 0 0 1 -1

The elements of the rows of V, are called first-level scaling signals, and the
elements of the rows of W), are called first-level Haar wavelets (29).
The first-level Haar transform of a Nx 1 vector f is

f, = Ryf = [a[d,]" (8.4-8)

where
a, = V,f (8.4-9a)
d, = Wyf (8.4-9b)

The vector a, represents the running average or frend of the elements of f, and the
vector d, represents the running fluctuation of the elements of f. The next step in
the recursion process is to compute the second-level Haar transform from the trend
part of the first-level transform and concatenate it with the first-level fluctuation vec-
tor. This results in

£, = [a,]d,[d,]" (8.4-10)

where
a, = V, »a, (8.4-11a)
d, = Wy ,a, (8.4-11b)

are N/4 x 1 vectors. The process continues until the full transform

S=1, = [a,)d,[d,_|..|d,]" (8.4-12)

is obtained where N = 2" . It should be noted that the intermediate levels are unitary
transforms.
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The Haar transform can be likened to a sampling process in which rows of the
transform matrix sample an input data sequence with finer and finer resolution
increasing in powers of 2. In image processing applications, the Haar transform pro-
vides a transform domain in which a type of differential energy is concentrated in
localized regions.

8.4.3. Daubechies Transforms

Daubechies (30) has discovered a class of wavelet transforms that utilize running
averages and running differences of the elements of a vector, as with the Haar trans-
form. The difference between the Haar and Daubechies transforms is that the aver-
ages and differences are grouped in four or more elements.

The Daubechies transform of support four, called Daub4, can be defined in a
manner similar to the Haar recursive generation process. The first-level scaling and
wavelet matrices are defined as

o, a, oz o, 0 0 ... 0 O
0 0 o a, o3 04 ... O
Vy=1]1 1+ : (8.4-13a)
0 0 0 O o O, Oy Oy
oy 0y, 0 0 0 0 ... 0 0 0 0,
By By B3 B, O O 0
0 0 B, By By By ... O
Wy=1| : & & @ i N : (8.4-13b)
0O 0 0 O B, B, By By
_B3B400 0 0 B [32_
where
1+.3
o, = -B, = (8.4-14a)
1 4 4
3+.3
o, = By = —== (8.4-14b)
2 3 4/
3-.3
o, = —f, = —== (8.4-14¢)
3 2 4/
1-./3
o, =B, = —== (8.4-144d)
4 1 42
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In Egs. 8.4-13a and 8.4-13b, the row-to-row shift is by two elements, and the last
two scale factors wrap around on the last rows. Following the recursion process of
the Haar transform results in the Daub4 transform final stage:

f=1, = [a,|d,[d,_,[..|d,;] (8.4-15)

Daubechies has extended the wavelet transform concept for higher degrees of
support, 6, 8, 10,..., by straightforward extension of Eq. 8.4-13 (29). Daubechies
also has also constructed another family of wavelets, called coiflets, after a sugges-
tion of Coifman (29).

8.5. KARHUNEN-LOEVE TRANSFORM

Techniques for transforming continuous signals into a set of uncorrelated represen-
tational coefficients were originally developed by Karhunen (31) and Loeve (32).
Hotelling (33) has been credited (34) with the conversion procedure that transforms
discrete signals into a sequence of uncorrelated coefficients. However, most of the
literature in the field refers to both discrete and continuous transformations as either
a Karhunen—Loeve transform or an eigenvector transform.

The Karhunen—Loeve transformation is a transformation of the general form

N-1 N-1
Fuv)y = Y Y FGAG, ksu,v) (8.5-1)

j=0 k=0

for which the kernel A(j, k; u, v) satisfies the equation

N-1 N-1
Mu, VYA, kyu, v) = z z Ke(j ks j KYA(T K 5 u,v) (8.5-2)
=0 k=0

where K(j, k; j’, k") denotes the covariance function of the image array and A(u, v)
is a constant for fixed (u, v). The set of functions defined by the kernel are the eigen-
functions of the covariance function, and A(u, v) represents the eigenvalues of the

covariance function. It is usually not possible to express the kernel in explicit form.
If the covariance function is separable such that

Kp(j ks j' k') = Ko, j)Kg(k, k') (8.5-3)

then the Karhunen-Loeve kernel is also separable and

A(J, ksu,v) = Ac(u, )AR(v, k) (8.5-4)
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The row and column kernels satisfy the equations

N-1

d(AR(Y, k) = Y Kylk, K)AR(v, K) (8.5-5a)
k'=0
N-1

AeWMA(u, j) = Z Ke(j,J)A (1, j) (8.5-5b)
j’ =0

In the special case in which the covariance matrix is of separable first-order Markov
process form, the eigenfunctions can be written in explicit form. For a one-dimen-
sional Markov process with correlation factor p, the eigenfunctions and eigenvalues
are given by (35)

2 1/2 _
and
1_ o2
Mu) = —P for 0<j,usN-1 (8.5-7)

1-2p cos{w(u)} +p°
where w(u) denotes the root of the transcendental equation

(1-p%) sinw

tan{Nw} = > (8.5-8)
cosw—2p +p-cosw
The eigenvectors can also be generated by the recursion formula (36)
A, 0) = M_")Z[A(u, 0) = pA(u, 1] (8.5-92)

I-p
Al i) = Alu) . 2 . . .
(u,]) = 1—2[—PA(M,J— D+ (1+p)A(u, j) - pA(u,j+1)] for 0<j<N-1
-p
(8.5-9b)

A, N—1) = A’(—Lt)z[—pA(u,N—Z) +pAGu, N=1)] (8.5-9¢)
1

by initially setting A(u, 0) = 1 and subsequently normalizing the eigenvectors.
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If the image array and transformed image array are expressed in vector form, the
Karhunen—Loeve transform pairs are

= Af (8.5-10)
f=A"fF (8.5-11)
The transformation matrix A satisfies the relation

AK; = AA (8.5-12)

where K; is the covariance matrix of f, A is a matrix whose rows are eigenvectors of
K;, and A is a diagonal matrix of the form

ML) 0 ... 0
Aol 0 M :
: 0
2
0 0 AN (8.5-13)
If K, is of separable form, then
A=A ®A, (8.5-14)
where Ag and A satisfy the relations
ARK, = AgAg (8.5-15a)
AK. = AcA, (8.5-15b)

and A(w) = Ag(vV)Ao(u) foru,v=1,2,.., N.
Figure 8.5-1 is a plot of the Karhunen—Loeve basis functions for a one-dimensional
Markov process with adjacent element correlation p = 0.9.
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VECTOR
NUMBER, n

ro. r'T"f;T‘T 1_I8'1—'—'—|—r12 =T r-+1-é
| ———

FIGURE 8.5-1. Karhunen-Loeve transform basis functions, N = 16.

The Karhunen-Loeve transform previously developed in this section applies to a
transform of spatial data. The concept applies also to a transform across spectral
bands of images or a transform of a temporal sequence of correlated images. Equa-
tion 3.5-22a defines the K-L transform of a RGB color image. If the number of
spectral bands or the number of temporal images is large, brute force computation of
the K-L transform may become very time consuming. Levy and Lindenbaum (37)
have developed a fast sequential K-L transform algorithm based upon the Singular
Value Decomposition (SVD) of the transform matrix. See Appendix Al.2 for a
definition of the SVD.
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LINEAR PROCESSING TECHNIQUES

Most discrete image processing computational algorithms are linear in nature; an
output image array is produced by a weighted linear combination of elements of an
input array. The popularity of linear operations stems from the relative simplicity of
spatial linear processing as opposed to spatial nonlinear processing. However, for
image processing operations, conventional linear processing is often computation-
ally infeasible without efficient computational algorithms because of the large
image arrays. This chapter considers indirect computational techniques that permit
more efficient linear processing than by conventional methods.

9.1. TRANSFORM DOMAIN PROCESSING

Two-dimensional linear transformations have been defined in Section 5.2 in series
form as

Nl N2
P(my, my) = z z F(ny,ny)T(ny, ny;my, my) 9.1-1)
n=1n,=1
and defined in vector form as
p=Tf (9.1-2)

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.
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It will now be demonstrated that such linear transformations can often be computed
more efficiently by an indirect computational procedure utilizing two-dimensional
unitary transforms than by the direct computation indicated by Eq. 9.1-1 or 9.1-2.

Figure 9.1-1 is a block diagram of the indirect computation technique called gen-
eralized linear filtering (1). In the process, the input array F(n,n,) undergoes a
two-dimensional unitary transformation, resulting in an array of transform coeffi-
cients #(u,, u,) . Next, a linear combination of these coefficients is taken according
to the general relation

M, M,

Fovpwy) = NN Ty, ) Ty, uyswy, wy) (9.1-3)

up =1 uy=1

where T(u,,u,;w,,w,) represents the linear filtering transformation function.
Finally, an inverse unitary transformation is performed to reconstruct the processed
array P(m, m,). If this computational procedure is to be more efficient than direct
computation by Eq. 9.1-1, it is necessary that fast computational algorithms exist for
the unitary transformation, and also the kernel 7(u,, u, ;w,, w,) must be reasonably
sparse; that is, it must contain many zero elements.

The generalized linear filtering process can also be defined in terms of vector-
space computations as shown in Figure 9.1-2. For notational simplicity, let N; = N,
=N and M| = M, = M. Then the generalized linear filtering process can be described
by the equations

f=1AL (9.1-4a)
f=1f (9.1-4b)
p=I[A,f (9.1-4c)
LINEAR
o———= TRANS - E—]
F (n,,n,) |FORMATION| P(m,, m,)

(a) Direct processing

FORWARD HN'%EAS INVERSE

o o UNITARY L UNITARY
Fln, ny) TRANS - F(u,u,) | TRANS- F(w,w,) |ITRANS- [ ° )
1 FORMATION "72" |FORMATION %2 | FormATION| T'™M M2

(b) Generalized linear filtering

FIGURE 9.1-1. Direct processing and generalized linear filtering; series formulation.
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(a) Direct processing

o S— — - -0
b b p
Az F ﬂ-,:‘z

(b) Generalized linear filtering

-

FIGURE 9.1-2. Direct processing and generalized linear filtering; vector formulation.

where AN2 is a N> xN° unitary transform matrix, 7 is a M*x N linear filtering
transform operation and AM2 isa M*x M unitary transform matrix. From Eq. 9.1-4,
the input and output vectors are related by

p = (A1 TIAIf 9.1-5)

Therefore, equating Eqs. 9.1-2 and 9.1-5 yields the relations between T and T given
by

T=[A, TIA ] (9.1-62)
T = [AITIA LT (9.1-6b)

If direct processing is employed, computation by Eq. 9.1-2 requires kP(MzNz)
operations, where 0 <k, <1 is a measure of the sparseness of T. With the general-
ized linear filtering technique, the number of operations required for a given opera-
tor are:

Forward transform: N by direct transformation

2N210g2N by fast transformation

Filter multiplication: kTMzN2

Inverse transform: m' by direct transformation

2M210g ,M by fast transformation
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where 0<k,<1 is a measure of the sparseness of 7. If &k, = 1 and direct unitary
transform computation is performed, it is obvious that the generalized linear filter-
ing concept is not as efficient as direct computation. However, if fast transform algo-
rithms, similar in structure to the fast Fourier transform, are employed, generalized
linear filtering will be more efficient than direct processing if the sparseness index
satisfies the inequality

kp< kp_izlogzN_lzlogzM 9.1-7)
M N

In many applications, T will be sufficiently sparse such that the inequality will be
satisfied. In fact, unitary transformation tends to decorrelate the elements of T caus-
ing T to be sparse. Also, it is often possible to render the filter matrix sparse by
setting small-magnitude elements to zero without seriously affecting computational
accuracy (1).

In subsequent sections, the structure of superposition and convolution operators
is analyzed to determine the feasibility of generalized linear filtering in these
applications.

9.2. TRANSFORM DOMAIN SUPERPOSITION

The superposition operations discussed in Chapter 7 can often be performed more
efficiently by transform domain processing rather than by direct processing. Figure
9.2-1a and b illustrate block diagrams of the computational steps involved in direct
finite area or sampled image superposition. In Figure 9.2-1d and e, an alternative
form of processing is illustrated in which a unitary transformation operation is per-
formed on the data vector f before multiplication by a finite area filter matrix D or
sampled image filter matrix B. An inverse transform reconstructs the output vector.
From Figure 9.2-1, for finite-area superposition, because

q = Df (9.2-1a)
and
-1
q =I[A, ] DIAIf (9.2-1b)
then clearly the finite-area filter matrix may be expressed as

-1
D =[A IDIA ] (9.2-2a)
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(b) Sampled image superposition

—
m
=

&

(c) Circulant superposition

¥ fifiq

Az Y-S A,

M2
(e) Transform domain sampled image superposition

SDst

LY

(f) Transform domain circulant superposition

FIGURE 9.2-1. Data and transform domain superposition.
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Similarly,

-1
B = [A:IBIA ] (9.2-2b)

If direct finite-area superposition is performed, the required number of
. . . 2.2 . . .
computational operations is approximately N”L~, where L is the dimension of the

impulse response matrix. In this case, the sparseness index of D is

ky = (é )2 (9.2-32)

Direct sampled image superposition requires on the order of ML’ operations, and
the corresponding sparseness index of B is

ky = (A% )2 (9.2-3b)

Figure 9.2-1fis a block diagram of a system for performing circulant superposition
by transform domain processing. In this case, the input vector kg is the extended
data vector, obtained by embedding the input image array F(n, n,) in the left cor-
ner of a JxJ array of zeros and then column scanning the resultant matrix. Follow-
ing the same reasoning as above, it is seen that

kp = Cf; = [AL] CIAIf (9.2-4a)

and hence,

C = [A,ICIA T (9.2-4b)

As noted in Chapter 7, the equivalent output vector for either finite-area or sampled
image superposition can be obtained by an element selection operation on Kg. For
finite-area superposition,

q = st es1"k, (9.2-5a)
and for sampled image superposition

g = (520" @821k, (9.2-5b)
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Also, the matrix form of the output for finite-area superposition is related to the
extended image matrix Kz by

T
Q = (819K, 515" (9.2-62)
For sampled image superposition,
G = (521K (52" (9.2-6b)

The number of computational operations required to obtain kg by transform domain
processing is given by the previous analysis for M = N =J.

Direct transformation 3

Fast transformation: Py log,J

If C is sparse, many of the J* filter multiplication operations can be avoided.

From the discussion above, it can be seen that the secret to computationally effi-
cient superposition is to select a transformation that possesses a fast computational
algorithm that results in a relatively sparse transform domain superposition filter
matrix. As an example, consider finite-area convolution performed by Fourier
domain processing (2,3). Referring to Figure 9.2-1, let

Ap=Ag®Ag (9.2-7)

where

A= [T ] i WP{;}

for x,y =1, 2,..., K. Also, let h(EK) denote the K> x 1 vector representation of the
extended spatially invariant impulse response array of Eq. 7.3-2 for J = K. The Fou-
rier transform of h(EK) is denoted as

K K

nd = [AKz]hg ) (9.2-8)
These transform components are then inserted as the diagonal elements of a K x K
matrix

HY = diaglh© 1), .., hO k)] (9.2-9)
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Then, it can be shown, after considerable manipulation, that the Fourier transform
domain superposition matrices for finite area and sampled image convolution can be
written as (4)

p=H"[P,®P,] (9.2-10)
forN=M-L+1and
B =[PP, 1H" 9.2-11)
where N=M + L+ 1 and
| L—w —(u-1)(L-1)
Pp(u,v) = — M (9.2-12a)
~(u-1) ~(v-1)
WM o—w, — Wy
| | g = DE=1)
Py(u,v) = — N (9.2-12b)

—(u—-1) —(v-1)
JN 11—, - Wy

Thus the transform domain convolution operators each consist of a scalar weighting
matrix H® and an interpolation matrix (P ® P) that performs the dimensionality con
version between the N - element input vector and the M - element output vector.
Generally, the interpolation matrix is relatively sparse, and therefore, transform domain
superposition is quite efficient.

Now, consider circulant area convolution in the transform domain. Following the
previous analysis it is found (4) that the circulant area convolution filter matrix
reduces to a scalar operator

c=JsHY 9.2-13)

Thus, as indicated in Egs. 9.2-10 to 9.2-13, the Fourier domain convolution filter
matrices can be expressed in a compact closed form for analysis or operational stor-
age. No closed-form expressions have been found for other unitary transforms.

Fourier domain convolution is computationally efficient because the convolution
operator C is a circulant matrix, and the corresponding filter matrix C is of diagonal
form. Actually, as can be seen from Eq. 9.1-6, the Fourier transform basis vectors
are eigenvectors of C (5). This result does not hold true for superposition in general,
nor for convolution using other unitary transforms. However, in many instances, the
filter matrices D, B and C are relatively sparse, and computational savings can often
be achieved by transform domain processing.
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Signal Fourier Hadamard

(a) Finite length convolution

(b) Sampled data convolution

(c) Circulant convolution

FIGURE 9.2-2. One-dimensional Fourier and Hadamard domain convolution matrices.

Figure 9.2-2 shows the Fourier and Hadamard domain filter matrices for the three
forms of convolution for a one-dimensional input vector and a Gaussian-shaped
impulse response (6). As expected, the transform domain representations are much
more sparse than the data domain representations. Also, the Fourier domain
circulant convolution filter is seen to be of diagonal form. Figure 9.2-3 illustrates the
structure of the three convolution matrices for two-dimensional convolution (4).

9.3. FAST FOURIER TRANSFORM CONVOLUTION

As noted previously, the equivalent output vector for either finite-area or sampled
image convolution can be obtained by an element selection operation on the
extended output vector Kg for circulant convolution or its matrix counterpart Kg.
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Spatial domain Fourier domain

(a) Finite-area convolution

(b) Sampled image convolution

(c) Circulant convolution

FIGURE 9.2-3. Two-dimensional Fourier domain convolution matrices.

This result, combined with Eq. 9.2-13, leads to a particularly efficient means of con-
volution computation indicated by the following steps:

1. Embed the impulse response matrix in the upper left corner of an all-zero
JxJ matrix, J>M for finite-area convolution or J>N for sampled
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infinite-area convolution, and take the two-dimensional Fourier transform
of the extended impulse response matrix, giving

H, = AH,A, (9.3-1)

2. Embed the input data array in the upper left corner of an all-zero J x J matrix,
and take the two-dimensional Fourier transform of the extended input data
matrix to obtain

Fp= AFA, (9.3-2)

3. Perform the scalar multiplication

Ky(m, n) = JHy(m, n) Fp(m, n) (9.3-3)

where 1<m,n</J.

4. Take the inverse Fourier transform

K = (A HylA T (9.3-4)

5. Extract the desired output matrix

T
Q = [s19"1K 815" (9.3-5a)
or
G = [sz(JM)]KE[sz(JM)]T (9.3-5b)

It is important that the size of the extended arrays in steps 1 and 2 be chosen large
enough to satisfy the inequalities indicated. If the computational steps are performed
with J = N, the resulting output array, shown in Figure 9.3-1, will contain erroneous
terms in a boundary region of width L — 1 elements, on the top and left-hand side of
the output field. This is the wraparound error associated with incorrect use of the
Fourier domain convolution method. In addition, for finite area (D-type) convolu-
tion, the bottom and right-hand-side strip of output elements will be missing. If the
computation is performed with J = M, the output array will be completely filled with
the correct terms for D-type convolution. To force J = M for B-type convolution, it is
necessary to truncate the bottom and right-hand side of the input array. As a conse-
quence, the top and left-hand-side elements of the output array are erroneous.
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EXTENDED IMAGE D-TYPE FILTERING B-TYPE FILTERING
L1
) ~EXTRANEQUS™ ]]L-1
o e
N A
J F o} GOOD M 1 GOOD A (M
0 offt-t L o 7077777 A )

(b) Improper zero padding

FIGURE 9.3-1. Wraparound error effects.

Figure 9.3-2 illustrates the Fourier transform convolution process with proper
zero padding. The example in Figure 9.3-3 shows the effect of no zero padding. In
both examples, the image has been filtered using a 11x 11 uniform impulse
response array. The source image of Figure 9.3-3 is 512 x 512 pixels. The source
image of Figure 9.3-2 is 502 x 502 pixels. It has been obtained by truncating the bot-
tom 10 rows and right 10 columns of the source image of Figure 9.3-3. Figure 9.3-4
shows computer printouts of the upper left corner of the processed images. Figure
9.3-4a is the result of finite-area convolution. The same output is realized in Figure
9.3-4b for proper zero padding. Figure 9.3-4¢ shows the wraparound error effect for
no zero padding.

In many signal processing applications, the same impulse response operator is
used on different data, and hence step 1 of the computational algorithm need not be
repeated. The filter matrix Hg may be either stored functionally or indirectly as a
computational algorithm. Using a fast Fourier transform algorithm, the forward and
inverse transforms require on the order of ZleogZJ operations each. The scalar
multiplication requires s operations, in general, for a total of Jz(l +4log,J) oper-
ations. For an Nx N input array, an M xM output array and an Lx L impulse
response array, finite-area convolution requires N'L? operations, and sampled
image convolution requires ML’ operations. If the dimension of the impulse
response L is sufficiently large with respect to the dimension of the input array N,
Fourier domain convolution will be more efficient than direct convolution, perhaps
by an order of magnitude or more. Figure 9.3-5 is a plot of L versus N for equality
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(b) He
(o) Fe (d)Fe
(e) Ke (HKe

FIGURE 9.3-2. Fourier transform convolution of the candy 502 luma image with
proper zero padding, clipped magnitude displays of Fourier images.
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(b) He
(o) Fe (d) Fe
(€) kg (f) Ke

FIGURE 9.3-3. Fourier transform convolution of the candy 512 luma image with
improper zero padding, clipped magnitude displays of Fourier images.
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0.001 0.002 0.003 0.005 0.006 0.007 0.008 0.009 0.010 0.011 0.013 0.013 0.013 0.013 0.013
0.002 0.005 0.007 0.009 0.011 0.014 0.016 0.018 0.021 0.023 0.025 0.025 0.026 0.026 0.026
0.003 0.007 0.010 0.014 0.017 0.020 0.024 0.027 0.031 0.034 0.038 0.038 0.038 0.039 0.039
0.005 0.009 0.014 0.018 0.023 0.027 0.032 0.036 0.041 0.046 0.050 0.051 0.051 0.051 0.051
0.006 0.011 0.017 0.023 0.028 0.034 0.040 0.045 0.051 0.057 0.063 0.063 0.063 0.064 0.064
0.007 0.014 0.020 0.027 0.034 0.041 0.048 0.054 0.061 0.068 0.075 0.076 0.076 0.076 0.076
0.008 0.016 0.024 0.032 0.040 0.048 0.056 0.064 0.072 0.080 0.088 0.088 0.088 0.088 0.088
0.009 0.018 0.027 0.036 0.045 0.054 0.064 0.073 0.082 0.091 0.100 0.100 0.100 0.100 0.101
0.010 0.020 0.031 0.041 0.051 0.061 0.071 0.081 0.092 0.102 0.112 0.112 0.112 0.113 0.113
0.011 0.023 0.034 0.045 0.056 0.068 0.079 0.090 0.102 0.113 0.124 0.124 0.125 0.125 0.125
0.012 0.025 0.087 0.050 0.062 0.074 0.087 0.099 0.112 0.124 0.136 0.137 0.137 0.137 0.137
0.012 0.025 0.037 0.049 0.062 0.074 0.086 0.099 0.111 0.124 0.136 0.136 0.136 0.136 0.136
0.012 0.025 0.037 0.049 0.062 0.074 0.086 0.099 0.111 0.123 0.135 0.135 0.135 0.135 0.135
0.012 0.025 0.037 0.049 0.061 0.074 0.086 0.098 0.110 0.123 0.135 0.135 0.135 0.135 0.134
0.012 0.025 0.037 0.049 0.061 0.074 0.086 0.098 0.110 0.122 0.134 0.134 0.134 0.134 0.134

(a) Finite-area convolution

0.001 0.002 0.003 0.005 0.006 0.007 0.008 0.009 0.010 0.011 0.013 0.013 0.013 0.013 0.013
0.002 0.005 0.007 0.009 0.011 0.014 0.016 0.018 0.021 0.023 0.025 0.025 0.026 0.026 0.026
0.003 0.007 0.010 0.014 0.017 0.020 0.024 0.027 0.031 0.034 0.038 0.038 0.038 0.039 0.039
0.005 0.009 0.014 0.018 0.023 0.027 0.032 0.036 0.041 0.046 0.050 0.051 0.051 0.051 0.051
0.006 0.011 0.017 0.023 0.028 0.034 0.040 0.045 0.051 0.057 0.063 0.063 0.063 0.064 0.064
0.007 0.014 0.020 0.027 0.034 0.041 0.048 0.054 0.061 0.068 0.075 0.076 0.076 0.076 0.076
0.008 0.016 0.024 0.032 0.040 0.048 0.056 0.064 0.072 0.080 0.088 0.088 0.088 0.088 0.088
0.009 0.018 0.027 0.036 0.045 0.054 0.064 0.073 0.082 0.091 0.100 0.100 0.100 0.100 0.101
0.010 0.020 0.031 0.041 0.051 0.061 0.071 0.081 0.092 0.102 0.112 0.112 0.112 0.113 0.113
0.011 0.023 0.034 0.045 0.056 0.068 0.079 0.090 0.102 0.113 0.124 0.124 0.125 0.125 0.125
0.012 0.025 0.037 0.050 0.062 0.074 0.087 0.099 0.112 0.124 0.136 0.137 0.137 0.137 0.137
0.012 0.025 0.037 0.049 0.062 0.074 0.086 0.099 0.111 0.124 0.136 0.136 0.136 0.136 0.136
0.012 0.025 0.037 0.049 0.062 0.074 0.086 0.099 0.111 0.123 0.135 0.135 0.135 0.135 0.135
0.012 0.025 0.087 0.049 0.061 0.074 0.086 0.098 0.110 0.123 0.135 0.135 0.135 0.135 0.134
0.012 0.025 0.087 0.049 0.061 0.074 0.086 0.098 0.110 0.122 0.134 0.134 0.134 0.134 0.134

(b) Fourier transform convolution with proper zero padding

0.771 0700 0.626 0.552 0.479 0.407 0.334 0.260 0.187 0.113 0.040 0.036 0.034 0.033 0.034
0.721 0.655 0.587 0.519 0.452 0.385 0.319 0.252 0.185 0.118 0.050 0.047 0.044 0.044 0.045
0.673 0.612 0.550 0.488 4.426 0.365 0.304 0.243 0.182 0.122 0.061 0.057 0.055 0.055 0.055
0.624 0.569 0.513 0.456 0.399 0.344 0.288 0.234 0.180 0.125 0.071 0.067 0.065 0.065 0.065
0.578 0.528 0.477 0426 0.374 0.324 0.274 0.225 0.177 0.129 0.081 0.078 0.076 0.075 0.075
0.532 0.488 0.442 0.396 0.350 0.305 0.260 0.217 0.174 0.133 0.091 0.088 0.086 0.085 0.086
0.486 0.448 0.407 0.367 0.326 0.286 0.246 0.208 0.172 0.136 0.101 0.098 0.096 0.096 0.096
0.438 0.405 0.371 0.336 0.301 0.266 0.232 0.200 0.169 0.139 0.110 0108 0.107 0.106 0.106
0.387 0.361 0.333 0.304 0.275 0.246 0.218 0.191 0.166 0.142 0.119 0.118 0.117 0.116 0.116
0.334 0.313 0.292 0.270 0.247 0.225 0.203 0.182 0.163 0.145 0.128 0.127 0.127 0.127 0.127
0278 0.264 0249 0233 0218 0.202 0.186 0.1772 0.159 0.148 0.136 0.137 0.137 0.137 0.137
0.273 0260 0.246 0231 0216 0.200 0.185 0.171 0.158 0.147 0.136 0.136 0.136 0.136 0.136
0.266 0.254 0.241 0.228 0.213 0.198 0.183 0.169 0.157 0.146 0.135 0.135 0.135 0.135 0.135
0.257 0.246 0.234 0.222 0.209 0.195 0.181 0.168 0.156 0.145 0.135 0.135 0.135 0.135 0.134
0.247 0.237 0.227 0.215 0.204 0.192 0.179 0.166 0.155 0.144 0.134 0.134 0.134 0.134 0.134

(c) Fourier transform convolution without zero padding

FIGURE 9.3-4. Wraparound error for Fourier transform convolution, upper left
corner of processed image.

between direct and Fourier domain finite area convolution. The jaggedness of the plot,
in this example, arises from discrete changes in J (64, 128, 256,...) as N increases.
Fourier domain processing is more computationally efficient than direct process-
ing for image convolution if the impulse response is sufficiently large. However, if
the image to be processed is large, the relative computational advantage of Fourier
domain processing diminishes. Also, there are attendant problems of computational
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FIGURE 9.3-5. Comparison of direct and Fourier domain processing for finite-area
convolution.3

accuracy with large Fourier transforms. Both difficulties can be alleviated by a
block-mode filtering technique in which a large image is separately processed in
adjacent overlapped blocks (2, 7-9).

Figure 9.3-6a illustrates the extraction of a Ny x Ny pixel block from the upper
left corner of a large image array. After convolution with a L x L impulse response,
the resulting M, x M pixel block is placed in the upper left corner of an output

N
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2 2 ! |
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| |
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(&) First block

(b) Second row and column blocks

FIGURE 9.3-6. Geometric arrangement of blocks for block-mode filtering.



FOURIER TRANSFORM FILTERING 233

data array as indicated in Figure 9.3-6a. Next, a second block of N, x N, pixels is
extracted from the input array to produce a second block of My x M, output pixels
that will lie adjacent to the first block. As indicated in Figure 9.3-6b, this second
input block must be overlapped by (L — 1) pixels in order to generate an adjacent
output block. The computational process then proceeds until all input blocks are
filled along the first row. If a partial input block remains along the row, zero-value
elements can be added to complete the block. Next, an input block, overlapped by
(L -1) pixels with the first row blocks, is extracted to produce the first block of the
second output row. The algorithm continues in this fashion until all output points are
computed.
A total of

O = N +2N" log,N (9.3-6)

operations is required for Fourier domain convolution over the full size image array.
With block-mode filtering with Ny x N, input pixel blocks, the required number of
operations is

0y = R*(Ny+ 2Ny, log, N) (9.3-7)

where R represents the largest integer value of the ratio N/(Nz+L-1) . Hunt (9)
has determined the optimum block size as a function of the original image size and
impulse response size.

9.4. FOURIER TRANSFORM FILTERING

The discrete Fourier transform convolution processing algorithm of Section 9.3 is
often utilized for computer simulation of continuous Fourier domain filtering. In this
section, discrete Fourier transform filter design techniques are considered.

9.4.1. Transfer Function Generation

The first step in the discrete Fourier transform filtering process is generation of the
discrete domain transfer function. For simplicity, the following discussion is limited
to one-dimensional signals. The extension to two dimensions is straightforward.

Consider a one-dimensional continuous signal f.(x) of wide extent, which is band-
limited such that its Fourier transform f.(w) is zero for |w| greater than a cutoft fre-
quency . This signal is to be convolved with a continuous impulse function /(x)
whose transfer function 4.(®) is also bandlimited to w,. From Chapter 1 it is known
that the convolution can be performed either in the spatial domain by the operation

gc(x) = f: fe(@)ho(x—a) do (9.4-1a)
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or in the continuous Fourier domain by
go(x) = %C [ Jel@)ic(@)exp{iox} do (9.4-1b)

Chapter 7 has presented techniques for the discretization of the convolution inte-
gral of Eq. 9.4-1. In this process, the continuous impulse response function /(x)
must be truncated by spatial multiplication of a window function y(x) to produce the
windowed impulse response

be(x) = he(x)y(x) (9.4-2)

where y(x) = 0 for [x| > 7. The window function is designed to smooth the truncation
effect. The resulting convolution integral is then approximated as

gclx) = | ’CjTT fel@)be(x— o) dot (9.4-3)

X

Next, the output signal g.(x) is sampled over 2J+1 points at a resolution
A = m/m,, and the continuous integration is replaced by a quadrature summation at
the same resolution A, yielding the discrete representation

j+K
8 = Y felkD)b (- k)A] 9.4-4)

k=j-K

where K is the nearest integer value of the ratio 7/A.

Computation of Eq. 9.4-4 by discrete Fourier transform processing requires
formation of the discrete domain transfer function #,,(u) . If the continuous domain
impulse response function #%.(x) is known analytically, the samples of the
windowed impulse response function are inserted as the first L = 2K + 1 elements of
a J-element sequence and the remaining J — L elements are set to zero. Thus, let

bp(p) = be(=K), oo be(0), s be(K) 0., 0 (9.4-5)

L terms

where 0<p<P-1. The terms of b,(p) can be extracted from the continuous
impulse response function %,(x) and the window function by the sampling
operation

bp(p) = y(x)h(x)8(x - pA) (9.4-6)
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The next step in the discrete Fourier transform convolution algorithm is to perform a
discrete Fourier transform of 5,,(p) over P points to obtain

P-1
1 —_2mipu
b(u) = — b,(p) ex {—} (9.4-7)
IR
where 0<u<P-1.

If the continuous domain transfer function A.(w) is known analytically, then
by, (u) can be obtained directly. It can be shown that

by (u) = 4Jj‘>n2 exp{_m(;_ 1)} fie ( ZPLA”) (9.4-8a)
bp(P—u) = 6} (w) (9.4-8b)

foru=0,1,..., P/2, where
be(®) = he(®) @y(0) (9.4-8¢)

and y(o) is the continuous domain Fourier transform of the window function y(x). If
ho(®) and y(w) are known analytically, then, in principle, A.(®) can be obtained
by analytically performing the convolution operation of Eq. 9.4-8¢ and evaluating
the resulting continuous function at points 2nu/PA . In practice, the analytic convo-
lution is often difficult to perform, especially in two dimensions. An alternative is to
perform an analytic inverse Fourier transformation of the transfer function 4.(®) to
obtain its continuous domain impulse response h(x) and then form 6, (u) from the
steps of Egs. 9.4-5 to 9.4-7. Still another alternative is to form b, (u) from A.(®)
according to Eqgs. 9.4-8a and 9.4-8b, take its discrete inverse Fourier transform, win-
dow the resulting sequence, and then form 6,(u) from Eq. 9.4-7.

9.4.2. Windowing Functions

The windowing operation performed explicitly in the spatial domain according to
Eq. 9.4-6 or implicitly in the Fourier domain by Eq. 9.4-8 is absolutely imperative if
the wraparound error effect described in Section 9.3 is to be avoided. A common
mistake in image filtering is to set the values of the discrete impulse response func-
tion arbitrarily equal to samples of the continuous impulse response function. The
corresponding extended discrete impulse response function will generally possess
nonzero elements in each of its J elements. That is, the length L of the discrete
impulse response embedded in the extended vector of Eq. 9.4-5 will implicitly be set
equal to J. Therefore, all elements of the output filtering operation will be subject to
wraparound error.
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A variety of window functions have been proposed for discrete linear filtering
(10-12). Several of the most common are listed in Table 9.4-1 and sketched in
Figure 9.4-1. Figure 9.4-2 shows plots of the transfer functions of these window
functions. The window transfer functions consist of a main lobe and sidelobes
whose peaks decrease in magnitude with increasing frequency. Examination of the
structure of Eq. 9.4-8 indicates that the main lobe causes a loss in frequency
response over the signal passband from 0 to o, while the sidelobes are responsible
for an aliasing error because the windowed impulse response function 4-(®) is not
bandlimited. A tapered window function reduces the magnitude of the sidelobes and
consequently attenuates the aliasing error, but the main lobe becomes wider, causing
the signal frequency response within the passband to be reduced. A design trade-off
must be made between these complementary sources of error. Both sources of
degradation can be reduced by increasing the truncation length of the windowed
impulse response, but this strategy will either result in a shorter length output
sequence or an increased number of computational operations.

TABLE 9.4-1. Window Functions“

Function Definition

Rectangular win)=1 0<n<L-1
2n 0<n— L-1
. L-1
Barlett (triangular) w(n) =
2o 2 Lole,cpg
L-1 2
Hanning w(n) = 1 1—cos 2nn 0<n<L-1
2 L-1

. 27n

Hamming w(n) = 0.54 - 0.46 cos {L 1 } 0<n<L-1

w(n) =0.42-0.5 cos

Blackman 21 L 0,08 cos | AT 0<sn<L-1
L-1 L-1

Kaiser

2 2 1/2
Io{wa[((L—l)/Z) —[n-((L-1)/2)]"] }

Iy{o,[(L-1)/2]}

0<n<L-1

ar O{ -} is the modified zeroth-order Bessel function of the first kind and ® . 1s a design parameter.
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FIGURE 9.4-1. One-dimensional window functions.

9.4.3. Discrete Domain Transfer Functions

In practice, it is common to define the discrete domain transform directly in the dis-
crete Fourier transform frequency space. The following are definitions of several
widely used transfer functions for a N x N pixel image. Applications of these filters
are presented in Chapter 10.

1. Zonal low-pass filter:

H(u,v) = 1 0<u<sC-1 and 0<v<C-1
0<u<C-1 and N+ 1 -C<v<N-1
N+1-C<us<N-1 and 0<v<C-1
N+1-C<u<N-1 and N+1-C<v<N-1 (9.4-9a)

H(u,v) =0 otherwise (9.4-9b)

where C is the filter cutoff frequency for 0 < C<1+ N/2. Figure 9.4-3 illus-
trates the low-pass filter zones.
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FIGURE 9.4-2. Transfer functions of one-dimensional window functions.

2. Zonal high-pass filter:

H(0,0) =0 (9.4-10a)

H(u,v) =0 0<u<C-1 and 0<v<C-1
0susC-1 and N+1-C<v<N-1
N+1-C<u<N-1 and 0<v<C-1

N+1-C<u<N-1 and N+1-C<v<N-1 (9.4-10b)

H(u,v) =1 otherwise (9.4-10c)
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FIGURE 9.4-3. Zonal filter transfer function definition.

3. Gaussian filter:
H(u,v) = Glu,v) 0<u<N/2 and 0<SVv<N/2
0<u<sN/2 and 1+N/2<v<N-1
1+N/2<u<N-1 and 0<v<N/2

1+N/2<u<N-1 and 1+N/2<v<N-1 (9.4-11a)

where

Glu, v) = exp{%[(suu)ﬂ(svv)z]} (9.4-11b)

and s, and s, are the Gaussian filter spread factors.
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4. Butterworth low-pass filter:

H(u,v) = B(u,v) 0<u<N/2 and 0<v<N/2
0<u<N/2 and 1+N/2<v<N-1
1+N/2<u<N-1 and 0<v<N/2

1+N/2<u<N-1 and 1+N/2<v<N-1 (9.4-12a)

where

Blu,v) =

2n
1+ {(u2 + vz)l/z} (94-12b)
C

where the integer variable # is the order of the filter. The Butterworth low- ll)ass
filter provides an attenuation of 50% at the cutoff frequency C = (u +v

5. Butterworth high-pass filter:

H(u,v) = B(u,v) O<us<N/2 and 0<v<N/2
0<us<N/2 and 1+N/2<v<N-1
1+N/2<u<N-1 and 0<v<N/2

1+N/2<u<N-1 and 1+N/2<v<N-1 (9.4-13a)

where

(9.4-13b)

C 2n
1+ 2 1/2
(u +v7)

Figure 9.4-4 shows the transfer functions of zonal and Butterworth low- and high-
pass filters for a 512 x 512 pixel image.
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(a) Zonal low-pass (b) Butterworth low-pass

(c) Zonal high-pass (d) Butterworth high-pass

FIGURE 9.4-4. Zonal and Butterworth low- and high-pass transfer functions; 512 x 512 images;
cutoff frequency = 64.

9.5. SMALL GENERATING KERNEL CONVOLUTION

It is possible to perform convolution on an N x N image array F(j, k) with an
arbitrary L x L impulse response array H(j, k) by a sequential technique called small
generating kernel (SGK) convolution (13—16). Figure 9.5-1 illustrates the decompo-
sition process in which a L x L prototype impulse response array H( j, k) is sequen-
tially decomposed into 3 x 3 pixel SGKs according to the relation

HG.K) = K G.k) ®K,(, ) ®... ®K (. k) (9.5-1)

where I:I(j, k) is the synthesized impulse response array, the symbol ® denotes
centered two-dimensional finite-area convolution, as defined by Eq. 7.1-14, and
K,(j, k) is the ith 3x3 pixel SGK of the decomposition, where Q0 = (L-1)/2.



242 LINEAR PROCESSING TECHNIQUES

FIGURE 9.5-1. Cascade decomposition of a two-dimensional impulse response array into
small generating kernels.

The SGK convolution technique can be extended to larger SGK kernels. Gener-
ally, the SGK synthesis of Eq. 9.5-1 is not exact. Techniques have been devel-
oped for choosing the SGKs to minimize the mean-square error between
H(j, k) and H(j, k) (13).

Two-dimensional convolution can be performed sequentially without approxima-
tion error by utilizing the singular-value decomposition technique described in
Appendix A1.2 in conjunction with the SGK decimation (17-19). With this method,
called SVD/SGK convolution, the impulse response array H(j, k) is regarded as a
matrix H. Suppose that H is orthogonally separable such that it can be expressed in
the outer product form

H = ab 9.5-2)

where a and b are column and row operator vectors, respectively. Then, the two-
dimensional convolution operation can be performed by first convolving the columns
of F(j, k) with the impulse response sequence a(j) corresponding to the vector a,
and then convolving the rows of that resulting array with the sequence b(k) corre-
sponding to the vector b. If H is not separable, the matrix can be expressed as a sum
of separable matrices by the singular-value decomposition by which

R
H- Y H, (9.5-3)
i=1

H, = sab] (9.5-3b)

L

where R>1 is the rank of H, s; is the ith singular value of H. The vectors a; and b;
are the Lx 1 eigenvectors of HH” and H'H, respectively.

Each eigenvector a; and b; of Eq. 9.5-3 can be considered to be a one-dimen-
sional sequence, which can be decimated by a small generating kernel expansion as

a;(j) = ¢;la; () ® - @aiq(j) @ @a,;p()] (9.5-4a)

bi(k) = rilb; (k) @ @b, (k) @ @b;y(k)] (9.5-4b)

where a; (j) and b, (k) are 3x 1 impulse response sequences corresponding to
the ith singular-value channel and the gth SGK expansion. The terms c; and r; are
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FIGURE 9.5-2. Nonseparable SVD/SGK expansion.

column and row gain constants. They are equal to the sum of the elements of their
respective sequences if the sum is nonzero, and equal to the sum of the magnitudes
otherwise. The former case applies for a unit-gain filter impulse response, while the
latter case applies for a differentiating filter.

As a result of the linearity of the SVD expansion of Eq. 9.5-3b, the large size
impulse response array H,(j, k) corresponding to the matrix H; of Eq. 9.5-3a can be
synthesized by sequential 3 x 3 convolutions according to the relation

Hi(J, k) = ric[K;(j, k) ®... @K, (j, k) ®... ®K,,(j, k)] (9.5-5)

1

where K, /(6 is the gth SGK of the ith SVD channel. Each K; /s ) is formed by an
outer product expansion of a pair of the a,,(j) and b, (k) terms of Eq. 9.5-4. The
ordering is important only for low-precision computation when roundoft error becomes
a consideration. Figure 9.5-2 is the flowchart for SVD/SGK convolution. The weight-
ing terms in the figure are

W; = siric; (9.5-0)

Reference 19 describes the design procedure for computing the K, (j, k) .
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PART 4

IMAGE IMPROVEMENT

The use of digital processing techniques for image improvement has received much
interest with the publicity given to applications in space imagery and medical
research. Other applications include image improvement for photographic surveys
and industrial radiographic analysis.

Image improvement is a term coined to denote three types of image manipulation
processes: image enhancement, image restoration and geometrical image modi-
fication. Image enhancement entails operations that improve the appearance to a
human viewer, or operations to convert an image to a format better suited to machine
processing. Image restoration has commonly been defined as the modification of an
observed image in order to compensate for defects in the imaging system that
produced the observed image. Geometrical image modification includes image
magnification, minification, rotation and nonlinear spatial warping.

Chapter 10 describes several techniques of monochrome and color image
enhancement. The chapters that follow develop models for image formation and
restoration, and present methods of point and spatial image restoration. The final
chapter of this part considers geometrical image modification.
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IMAGE ENHANCEMENT

Image enhancement processes consist of a collection of techniques that seek to
improve the visual appearance of an image or to convert the image to a form better
suited for analysis by a human or a machine. In an image enhancement system, there
is no conscious effort to improve the fidelity of a reproduced image with regard to
some ideal form of the image, as is done in image restoration. Actually, there is
some evidence to indicate that often a distorted image, for example, an image with
amplitude overshoot and undershoot about its object edges, is more subjectively
pleasing than a perfectly reproduced original.

For image analysis purposes, the definition of image enhancement stops short of
information extraction. As an example, an image enhancement system might
emphasize the edge outline of objects in an image by high-frequency filtering. This
edge-enhanced image would then serve as an input to a machine that would trace the
outline of the edges, and perhaps make measurements of the shape and size of the
outline. In this application, the image enhancement processor would emphasize
salient features of the original image and simplify the processing task of a data-
extraction machine.

There is no general unifying theory of image enhancement at present because
there is no general standard of image quality that can serve as a design criterion for
an image enhancement processor. Consideration is given here to a variety of tech-
niques that have proved useful for human observation improvement and image
analysis.

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.
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10.1. CONTRAST MANIPULATION

One of the most common defects of photographic or electronic images is poor con-
trast resulting from a reduced, and perhaps nonlinear, image amplitude range. Image
contrast can often be improved by amplitude rescaling of each pixel (1,2). Figure
10.1-1a illustrates a transfer function for contrast enhancement of a typical continu-
ous amplitude low-contrast image. For continuous amplitude images, the transfer
function operator can be implemented by photographic techniques, but it is often
difficult to realize an arbitrary transfer function accurately. For quantized amplitude
images, implementation of the transfer function is a relatively simple task. However,
in the design of the transfer function operator, consideration must be given to the
effects of amplitude quantization. With reference to Figure 10.1-1b, suppose that an
original image is quantized to J levels, but it occupies a smaller range. The output
image is also assumed to be restricted to J levels, and the mapping is linear. In the
mapping strategy indicated in Figure 10.1-1b, the output level chosen is that level
closest to the exact mapping of an input level. It is obvious from the diagram that the
output image will have unoccupied levels within its range, and some of the gray
scale transitions will be larger than in the original image. The latter effect may result
in noticeable gray scale contouring. If the output image is quantized to more levels
than the input image, it is possible to approach a linear placement of output levels,
and hence, decrease the gray scale contouring effect.

FIGURE 10.1-1. Continuous and quantized image contrast enhancement.
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10.1.1. Amplitude Scaling

A digitally processed image may occupy a range different from the range of the
original image. In fact, the numerical range of the processed image may encompass
negative values, which cannot be mapped directly into a light intensity range. Figure
10.1-2 illustrates several possibilities of scaling an output image back into the
domain of values occupied by the original image. By the first technique, the pro-
cessed image is linearly mapped over its entire range, while by the second technique,
the extreme amplitude values of the processed image are clipped to maximum and
minimum limits. The second technique is often subjectively preferable, especially
for images in which a relatively small number of pixels exceed the limits. Contrast
enhancement algorithms often possess an option to clip a fixed percentage of the
amplitude values on each end of the amplitude scale. In medical image enhancement
applications, the contrast modification operation shown in Figure 10.1-2b, for a 20,
is called a window-level transformation. The window value is the width of the linear
slope, b—a; the level is located at the midpoint ¢ of the slope line. The third
technique of amplitude scaling, shown in Figure 10.1-2¢, utilizes an absolute value
transformation for visualizing an image with negatively valued pixels. This
is a useful transformation for systems that utilize the two's complement numbering

(a) Linear image scaling

(b) Linear image scaling with clipping

(c) Absolute value scaling

FIGURE 10.1-2. Image scaling methods.
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(a) Linear, full range, —0.147 to 0.169

(b) Clipping, 0.000 to 0.169 (¢) Absolute value, 0.000 to 0.169

FIGURE 10.1-3. Image scaling of the Q component of the Y/Q representation of the
dolls gamma color image.

convention for amplitude representation. In such systems, if the amplitude of a pixel
overshoots +1.0 (maximum luminance white) by a small amount, it wraps around by
the same amount to —1.0, which is also maximum luminance white. Similarly, pixel
undershoots remain near black.

Figure 10.1-3 illustrates the amplitude scaling of the Q component of the YIQ
transformation, shown in Figure 3.5-14, of a monochrome image containing nega-
tive pixels. Figure 10.1-3a presents the result of amplitude scaling with the linear
function of Figure 10.1-2a over the amplitude range of the image. In this example,
the most negative pixels are mapped to black (0.0), and the most positive pixels are
mapped to white (1.0). Amplitude scaling in which negative value pixels are clipped
to zero is shown in Figure 10.1-3b. The black regions of the image correspond
tonegative pixel values of the Q component. Absolute value scaling is presented in
Figure 10.1-3c.
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(a) Original (b) Original histogram
(¢) Min. clip = 0.17, max. clip = 0.64 (d) Enhancement histogram
(e) Min. clip = 0.24, max. clip = 0.35 (f) Enhancement histogram

FIGURE 10.1-4. Window-level contrast stretching of an earth satellite image.

Figure 10.1-4 shows examples of contrast stretching of a poorly digitized original
satellite image along with gray scale histograms of the original and enhanced pictures.
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In Figure 10.1-4c, the clip levels are set at the histogram limits of the original while in
Figure 10.1-4e, the clip levels truncate 5% of the original image upper and lower level
amplitudes. It is readily apparent from the histogram of Figure 10.1-4f that the con-
trast-stretched image of Figure 10.1-4e has many unoccupied amplitude levels. Gray
scale contouring is at the threshold of visibility.

10.1.2. Contrast Modification

Section 10.1.1 dealt with amplitude scaling of images that do not properly utilize the
dynamic range of a display; they may lie partly outside the dynamic range or occupy
only a portion of the dynamic range. In this section, attention is directed to point
transformations that modify the contrast of an image within a display’s dynamic
range.

Figure 10.1-5a contains an original image of a jet aircraft that has been digi-
tized to 256 gray levels and numerically scaled over the range of 0.0 (Black) to
1.0 (White). The histogram of the image is shown in Figure 10.1-5b. Examination

(a) Original (b) Original histogram

(c) Transfer function (d) Contrast stretched

FIGURE 10.1-5. Window-level contrast stretching of the jet mon image.
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(a) Square function (b) Square output

(c) Cube function (d) Cube output

FIGURE 10.1-6. Square and cube contrast modification of the jet mon image.

of the histogram of the image reveals that the image contains relatively few low-
or high- amplitude pixels. Consequently, applying the window-level contrast
stretching function of Figure 10.1-5¢ results in the image of Figure 10.1-5d, which
possesses better visual contrast but does not exhibit noticeable visual clipping.

Consideration will now be given to several nonlinear point transformations, some
of which will be seen to improve visual contrast, while others clearly impair visual
contrast. Figures 10.1-6 and 10.1-7 provide examples of power law point transfor-
mations in which the processed image is defined by

GG, k) = [F(j, k)1 (10.1-1)

where 0.0 <F(j, k) < 1.0 represents the original image and p is the power law vari-
able. It is important that the amplitude limits of Eq. 10.1-1 be observed; processing
of the integer code (e.g., 0 to 255) by Eq. 10.1-1 will give erroneous results. The
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(a) Square root function (b) Square root output

(c) Cube root function (d) Cube root output

FIGURE 10.1-7. Square root and cube root contrast modification of the jet mon image.

square function provides the best visual result. The rubber band transfer function
shown in Figure 10.1-8a provides a simple piecewise linear approximation to the
power law curves. It is often useful in interactive enhancement machines in which
the inflection point is interactively placed.

The Gaussian error function behaves like a square function for low-amplitude
pixels and like a square root function for high- amplitude pixels. It is defined as

erf{m k)—o.S}+ 05

a2 | ah

G(], k) — (101-23)

0.5
2 erf{ a_ﬁ }
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(a) Rubber-band function (b) Rubber-band output

FIGURE 10.1-8. Rubber-band contrast modification of the jet mon image.

where

_ i X B 2 ~
erf{x} = ﬁjoexp{ vy b dy (10.1-2b)

and a is the standard deviation of the Gaussian distribution.
The logarithm function is useful for scaling image arrays with a very wide
dynamic range. The logarithmic point transformation is given by

. _ loge{1.0+aF(j,k)} _
G(j, k) = 02 (20] (10.1-3)

under the assumption that 0.0 < F(j, k) < 1.0 where a is a positive scaling factor. Fig-
ure 8.2-4 illustrates the logarithmic transformation applied to an array of Fourier
transform coefficients.

There are applications in image processing in which monotonically decreas-
ing and nonmonotonic amplitude scaling is useful. For example, contrast reverse
and contrast inverse transfer functions, as illustrated in Figure 10.1-9, are often
helpful in visualizing detail in dark areas of an image. The reverse function is
defined as

G(j, k) = 1.O-F(j, k) (10.1-4)
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(a) Reverse function (b) Reverse function output

(¢) Inverse function (d) Inverse function output

FIGURE 10.1-9. Reverse and inverse function contrast modification of the jet _mon image.

where 0.0 < F(j, k) < 1.0. The inverse function

G(j, k) = 1.0 for 0.0< F(j, k) <0.1 (10.1-5a)
Cry = 01 <F(i k)< .
G(j, k) G0 for 0.1 <F(j, k)< 1.0 (10.1-5b)

is clipped at the 10% input amplitude level to maintain the output amplitude within
the range of unity.

Amplitude-level slicing, as illustrated in Figure 10.1-10, is a useful interactive
tool for visually analyzing the spatial distribution of pixels of certain amplitude
within an image. With the function of Figure 10.1-10a, all pixels within the ampli-
tude passband are rendered maximum white in the output, and pixels outside the
passband are rendered black. Pixels outside the amplitude passband are displayed in
their original state with the function of Figure 10.1-10b.
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Out

In
0 L u
(a) Zero background scaling transformation
Out
v+
L L In
1 T
O L v

(b) Image background scaling transformation

FIGURE 10.1-10. Level slicing contrast modification functions.

10.1.3. Wide Dynamic Range Image Amplitude Scaling

In many imaging applications, a source image sensor may have a much greater
dynamic than an associated display device. In such instances, many of the contrast
modification procedures presented previously can be used to perform a point trans-
formation of the gray scale of a source image to the gray scale of a destination image
to best visualize certain details within the source image. Pardo and Sapiro (3) have
proposed a different approach for the visualization of image detail for wide dynamic
range source images. In their approach, the source image is amplitude segmented
(see Section 17.1) into a small number, N, of amplitude segments. Then, the source
image is linearly scaled using a window-level transform over each non-overlapping
source amplitude range to produce N destination images, each of which captures
certain image detail of the source image. Figure 10.1-11 provides an example of this
method for N equal to three. Figure 10.1-11a shows a source image linearly scaled
over its input range. Figure 10.1-115 shows the three amplitude segments mapped as
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black, mid-gray and white. Figures 10.1-11¢, 10.1-11d and 10.1-11e are the result-
ant displays over the three amplitude ranges.

(a) Single linear scaling (b) Amplitude segments

(c) Low amplitude (d) Mid-amplitude (e) High amplitude

FIGURE 10.1-11. Example of multiple destination image scaling of a wide dynamic range
source image. Courtesy G. Sapiro, University of Minnesota.
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10.2. HISTOGRAM MODIFICATION

The luminance histogram of a typical natural scene that has been linearly quan-
tized is usually highly skewed toward the darker levels; a majority of the pixels
possess a luminance less than the average. In such images, detail in the darker
regions is often not perceptible. One means of enhancing these types of images is
a technique called histogram modification, in which the original image is rescaled
so that the histogram of the enhanced image follows some desired form. Andrews,
Hall and others (4-6) have produced enhanced imagery by a histogram equaliza-
tion process for which the histogram of the enhanced image is forced to be uni-
form. Frei (7) has explored the use of histogram modification procedures that
produce enhanced images possessing exponential or hyperbolic-shaped histo-
grams. Ketcham (8) and Hummel (9) have demonstrated improved results by an
adaptive histogram modification procedure.

INPUT
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=
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FIGURE 10.2-1. Approximate gray level histogram equalization with unequal number of
quantization levels.

10.2.1. Nonadaptive Histogram Modification

Figure 10.2-1 gives an example of histogram equalization. In the figure, H,(c) for
c =1, 2,..., C, represents the fractional number of pixels in an input image whose
amplitude is quantized to the cth reconstruction level. Histogram equalization
seeks to produce an output image field G by point rescaling such that the
normalized gray-level histogram H(d) = 1/D ford =1, 2,..., D. In the example
of Figure 10.2-1, the number of output levels is set at one-half of the number of
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input levels. The scaling algorithm is developed as follows. The average value of the
histogram is computed. Then, starting at the lowest gray level of the original, the
pixels in the quantization bins are combined until the sum is closest to the average.
All of these pixels are then rescaled to the new first reconstruction level at the mid-
point of the enhanced image first quantization bin. The process is repeated for
higher-value gray levels. If the number of reconstruction levels of the original image
is large, it is possible to rescale the gray levels so that the enhanced image histogram
is almost constant. It should be noted that the number of reconstruction levels of the
enhanced image must be less than the number of levels of the original image to pro-
vide proper gray scale redistribution if all pixels in each quantization level are to be
treated similarly. This process results in a somewhat larger quantization error. It is
possible to perform the gray scale histogram equalization process with the same
number of gray levels for the original and enhanced images, and still achieve a con-
stant histogram of the enhanced image, by randomly redistributing pixels from input
to output quantization bins

The histogram modification process can be considered to be a monotonic point
transformation g, = T{f.} for which the input amplitude variable f, <f <f. is
mapped into an output variable g, <g,<g, such that the output probability dis-
tribution Pp{g,=b,} follows some desired form for a given input probability
distribution Pp{f, = a,} where a. and b, are reconstruction values of the cth and
dth levels. Clearly, the input and output probability distributions must each sum
to unity. Thus,

C

Y Ppif.=a} =1 (10.2-1a)
c=1

D

Y Pylgg=by) = 1 (10.2-1b)
d=1

Furthermore, the cumulative distributions must equate for any input index c. That is,
the probability that pixels in the input image have an amplitude less than or equal to
a. must be equal to the probability that pixels in the output image have amplitude
less than or equal to b, where b, = T{a,} because the transformation is mono-
tonic. Hence

d c
> Prig,=b,3 = Y Prlf, =a,} (10.2-2)

n=1 m=1



HISTOGRAM MODIFICATION 261

The summation on the right is the cumulative probability distribution of the input
image. For a given image, the cumulative distribution is replaced by the cumulative
histogram to yield the relationship

d c
> Prlg,=b,t = Y Hp(m) (10.2-3)

n=1 m=1

Equation 10.2-3 now must be inverted to obtain a solution for g, in terms of f,.. In
general, this is a difficult or impossible task to perform analytically, but certainly
possible by numerical methods. The resulting solution is simply a table that indi-
cates the output image level for each input image level.

The histogram transformation can be obtained in approximate form by replacing
the discrete probability distributions of Eq. 10.2-2 by continuous probability densi-
ties. The resulting approximation is

[ pu0rds = [ prnar (10.2-4)
g i

min min

where p,(f) and p,(g) are the probability densities of f and g, respectively. The
integral on the right is the cumulative distribution function P,(f) of the input vari-
able f. Hence,

[} pe)ds = Pp(f) (10.2-5)

In the special case, for which the output density is forced to be the uniform density,

Pylg) = —— (10.2-6)

max ~ 8min
for g..n <8< 8.« » the histogram equalization transfer function becomes
8= (gmax_gmin)Pf )] * &min (102-7)

Table 10.2-1 lists several output image histograms and their corresponding transfer
functions.

Figure 10.2-2 provides an example of histogram equalization for an x-ray of a
projectile. The original image and its histogram are shown in Figure 10.2-2a and b,
respectively. The transfer function of Figure 10.2-2¢ is equivalent to the cumulative
histogram of the original image. In the histogram equalized result of Figure 10.2-2,
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el

projectiie

(a) Original (b) Original histogram

(¢) Transfer function

JW ' “lh-

- #qual ized

(d) Enhanced (e) Enhanced histogram

FIGURE 10.2-2. Histogram equalization of the projectile image.
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ablating material from the projectile, not seen in the original, is clearly visible. The
histogram of the enhanced image appears peaked, but close examination reveals that
many gray level output values are unoccupied. If the high occupancy gray levels
were to be averaged with their unoccupied neighbors, the resulting histogram would
be much more uniform.

Histogram equalization usually performs best on images with detail hidden in
dark regions. Good-quality originals are often degraded by histogram equalization.
As an example, Figure 10.2-3 shows the result of histogram equalization on the jet
image

(a) Original

(b) Transfer function (c) Histogram equalized

FIGURE 10.2-3. Histogram equalization of the jet mon image.

Frei (7) has suggested the histogram hyperbolization procedure listed in Table
10.2-1 and described in Figure 10.2-4. With this method, the input image histogram
is modified by a transfer function such that the output image probability density is of
hyperbolic form. Then the resulting gray scale probability density following the



HISTOGRAM MODIFICATION 265

assumed logarithmic or cube root response of the photoreceptors of the eye model
will be uniform. In essence, histogram equalization is conceptually performed after
the cones of the retina.
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FIGURE 10.2-4. Histogram hyperbolization

10.2.2. Adaptive Histogram Modification

The histogram modification methods discussed in Section 10.2.1 involve application
of the same transformation or mapping function to each pixel in an image. The map-
ping function is based on the histogram of the entire image. This process can be
made spatially adaptive by applying histogram modification to each pixel based on
the histogram of pixels within a moving window neighborhood. This technique is
obviously computationally intensive, as it requires histogram generation, mapping
function computation and mapping function application at each pixel.

Pizer et al. (10) have proposed an adaptive histogram equalization technique in
which histograms are generated only at a rectangular grid of points and the map-
pings at each pixel are generated by interpolating mappings of the four nearest grid
points. Figure 10.2-5 illustrates the geometry. A histogram is computed at each grid
point in a window about the grid point. The window dimension can be smaller or
larger than the grid spacing. Let My, M, My;, M denote the histogram modifica-
tion mappings generated at four neighboring grid points. The mapping to be applied
at pixel F(j, k) is determined by a bilinear interpolation of the mappings of the four
nearest grid points as given by

M = (1-a)(1-b)Myy +a(1 =b)M o + (1 —a)bMy, +abM,,  (10.2-8a)
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where
a=1700 (10.2-8b)
J1=Jo
k—k
b = 0 (10.2-8¢)
kl - kO

Pixels in the border region of the grid points are handled as special cases of
Eq. 10.2-8. Equation 10.2-8 is best suited for general-purpose computer calculation.
For parallel processors, it is often more efficient to use the histogram generated in
the histogram window of Figure 10.2-5 and apply the resultant mapping function
to all pixels in the mapping window of the figure. This process is then repeated at all
grid points. At each pixel coordinate (j, k), the four histogram modified pixels
obtained from the four overlapped mappings are combined by bilinear interpolation.
Figure 10.2-6 presents a comparison between nonadaptive and adaptive histogram
equalization of a monochrome image. In the adaptive histogram equalization exam-
ple, the histogram window is 64 x 64 .

Images generated by the adaptive histogram equalization process sometimes can
be harsh in visual appearance. Stark (11) has proposed adaptive blurring of the win-
dow histogram prior to forming the cumulative histogram as a means of improving
image quality.

W / histogram window
w ] L] /I/ L]
l Jorko Je-1ko
F(, k)
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FIGURE 10.2-5. Array geometry for interpolative adaptive histogram modification. [ Grid
point; e pixel to be computed.
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(a) Original

(b) Nonadaptive (c) Adaptive

FIGURE 10.2-6. Nonadaptive and adaptive histogram equalization of the brainscan image.

10.3. NOISE CLEANING

An image may be subject to noise and interference from several sources, including
electrical sensor noise, photographic grain noise and channel errors. These noise
effects can be reduced by classical statistical filtering techniques to be discussed in
Chapter 12. Another approach, discussed in this section, is the application of ad hoc
noise cleaning techniques.

Image noise arising from a noisy sensor or channel transmission errors usually
appears as discrete isolated pixel variations that are not spatially correlated. Pixels
that are in error often appear visually to be markedly different from their neighbors.
This observation is the basis of many noise cleaning algorithms (12—15). In this sec-
tion, several linear and nonlinear techniques that have proved useful for noise reduc-
tion are described.
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Figure 10.3-1 shows two test images, which will be used to evaluate noise clean-
ing techniques. Figure 10.3-1b has been obtained by adding uniformly distributed
noise to the original image of Figure 10.3-1a. In the impulse noise example of
Figure 10.3-1¢, maximum-amplitude pixels replace original image pixels in a spa-
tially random manner.

(a) Original

(b) Original with uniform noise () Original with impulse noise

FIGURE 10.3-1. Noisy test images derived from the peppers_mon image.

10.3.1. Linear Noise Cleaning

Noise added to an image generally has a higher-spatial-frequency spectrum than the
normal image components because of its spatial decorrelatedness. Hence, simple
low-pass filtering can be effective for noise cleaning. Consideration will now be
given to convolution and Fourier domain methods of noise cleaning.
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Spatial Domain Processing. Following the techniques outlined in Chapter 7, a
spatially filtered output image G(j, k) can be formed by discrete convolution of an
input image F(j, k) with a L x L impulse response array H(j, k) according to the
relation

G(j, k) = Zz F(m,n)Hm+j+C,n+k+C) (10.3-1)

where C = (L + 1)/2. Equation 10.3-1 utilizes the centered convolution notation
developed by Eq. 7.1-14, whereby the input and output arrays are centered with
respect to one another, with the outer boundary of G(j, k) of width (L-1)/2 pixels
set to zero.

For noise cleaning, H should be of low-pass form, with all positive elements.
Several common 3 x3 pixel impulse response arrays of low-pass form are listed
below.

| 1 1 1
Mask 1: H = 5 1 1 1 (103-2&)
1 1 1
AR
Mask 2: H = M 1 2 1 (10.3-2b)
I T
o2
Mask 3: H = 16 2 4 2 (10.3-2¢)
2

These arrays, called noise cleaning masks, are normalized to unit weighting so that
the noise-cleaning process does not introduce an amplitude bias in the processed
image. The effect of noise cleaning with the arrays on the uniform noise and impulse
noise test images is shown in Figure 10.3-2. Mask 1 and 3 of Eq. 10.3-2 are special
cases of a 3 x3 parametric low-pass filter whose impulse response is defined as

1 2
H=(_) s 2 b (10.3-3)
1



270 IMAGE ENHANCEMENT

(a) Uniform noise, mask 1 (b) Impulse noise, mask 1
(¢) Uniform noise, mask 2 (d) Impulse noise, mask 2
(e) Uniform noise, mask 3 (f) Impulse noise, mask 3

FIGURE 10.3-2. Noise cleaning with 3 X 3 low-pass impulse response arrays on the noisy
test images.



NOISE CLEANING 271

(a) Uniform rectangle (b) Uniform circular

(c) Pyramid (d) Gaussian, s=1.0

FIGURE 10.3-3. Noise cleaning with 7 X 7 impulse response arrays on the noisy test image
with uniform noise.

The concept of low-pass filtering noise cleaning can be extended to larger
impulse response arrays. Figures 10.3-3 and 10.3-4 present noise cleaning results for
several 7x7 impulse response arrays for uniform and impulse noise. As expected,
use of a larger impulse response array provides more noise smoothing, but at the
expense of the loss of fine image detail.

Fourier Domain Processing. 1t is possible to perform linear noise cleaning in the
Fourier domain (15) using the techniques outlined in Section 9.3. Properly executed,
there is no difference in results between convolution and Fourier filtering; the choice
is a matter of implementation considerations.

High-frequency noise effects can be reduced by Fourier domain filtering with a
zonal low-pass filter with a transfer function defined by Eq. 9.3-9. The sharp cutoff
characteristic of the zonal low-pass filter leads to ringing artifacts in a filtered
image. This deleterious effect can be eliminated by the use of a smooth cutoff filter,
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(@) Uniform rectangle (b) Uniform circular

(c) Pyramid (d) Gaussian, s=1.0

FIGURE 10.3-4. Noise cleaning with 7 X 7 impulse response arrays on the noisy test image
with impulse noise.

such as the Butterworth low-pass filter whose transfer function is specified by Eq.
9.4-12. Figure 10.3-5 shows the results of zonal and Butterworth low-pass filtering
of noisy images.

Unlike convolution, Fourier domain processing, often provides quantitative and
intuitive insight into the nature of the noise process, which is useful in designing
noise cleaning spatial filters. As an example, Figure 10.3-6a shows an original
image subject to periodic interference. Its two-dimensional Fourier transform,
shown in Figure 10.3-6b, exhibits a strong response at the two points in the Fourier
plane corresponding to the frequency response of the interference. When multiplied
point by point with the Fourier transform of the original image, the bandstop filter of
Figure 10.3-6¢ attenuates the interference energy in the Fourier domain. Figure
10.3-6d shows the noise-cleaned result obtained by taking an inverse Fourier trans-
form of the product.
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(a) Uniform noise, zonal (b) Impulse noise, zonal

(c) Uniform noise, Butterworth (d) Impulse noise, Butterworth

FIGURE 10.3-5. Noise cleaning with zonal and Butterworth low-pass filtering on the noisy
test images; cutoff frequency = 64.

Homomorphic Filtering. Homomorphic filtering (16) is a useful technique for
image enhancement when an image is subject to multiplicative noise or interference.
Figure 10.3-7 describes the process. The input image F(j, k) is assumed to be mod-
eled as the product of a noise-free image S(j, k) and an illumination interference
array 1(j, k) . Thus,

F(j, k) = 1(j, k)SCj, k) (10.3-4)

Ideally, I(j, k) would be a constant for all (j, k) . Taking the logarithm of Eq. 10.3-4
yields the additive linear result

log{F(j, k)} = log{I(j, )} +log{S(j, k)} (10.3-5)
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(a) Original (b) Original Fourier transform

(c) Bandstop filter (d) Noise cleaned

FIGURE 10.3-6. Noise cleaning with Fourier domain band stop filtering on the parts
image with periodic interference.

Conventional linear filtering techniques can now be applied to reduce the log
interference component. Exponentiation after filtering completes the enhance-
ment process. Figure 10.3-8 provides an example of homomorphic filtering. In
this example, the illumination field I(j, k) increases from left to right from a
value of 0.1 to 1.0.

FIGURE 10.3-7. Homomorphic filtering.
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(a) lllumination field (b) Original

henonerphic fFlltering

(c) Homomorphic filtering

FIGURE 10.3-8. Homomorphic filtering on the washington_ir image with a
Butterworth high-pass filter; cutoff frequency = 4.

Therefore, the observed image appears quite dim on its left side. Homomorphic fil-
tering (Figure 10.3-8¢) compensates for the nonuniform illumination.

10.3.2. Nonlinear Noise Cleaning

The linear processing techniques described previously perform reasonably well
on images with continuous noise, such as additive uniform or Gaussian distrib-
uted noise. However, they tend to provide too much smoothing for impulse like
noise. Nonlinear techniques often provide a better trade-off between noise
smoothing and the retention of fine image detail. Several nonlinear techniques
are presented below. Mastin (17) has performed subjective testing of several of
these operators.
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o
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| 8
EZO‘

FIGURE 10.3-9. Outlier noise cleaning algorithm.

Outlier. Figure 10.3-9 describes a simple outlier noise cleaning technique in which
each pixel is compared to the average of its eight neighbors. If the magnitude of the
difference is greater than some threshold level, the pixel is judged to be noisy, and it
is replaced by its neighborhood average. The eight-neighbor average can be com-
puted by convolution of the observed image with the impulse response array

1 111
H = 3 1 0 1 (10.3-6)
111

Figure 10.3-10 presents the results of outlier noise cleaning for a threshold level
of 10%.

(@) Uniform noise (b) Impulse noise

FIGURE 10.3-10. Noise cleaning with the outlier algorithm on the noisy test images.
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The outlier operator can be extended straightforwardly to larger windows. Davis
and Rosenfeld (18) have suggested a variant of the outlier technique in which the
center pixel in a window is replaced by the average of its k neighbors whose ampli-
tudes are closest to the center pixel. Lee has proposed another variant of the outlier
algorithm, called the sigma filter (19). With the sigma filter, the neighborhood sum
includes only those pixels in an amplitude range of 26 where ¢ is the standard
deviation of the corrupting Gaussian noise. Kenny et al. (20) have proposed the use
of the Fisher discriminant to determine a “peer group” of neighboring pixels to be
used in the neighbor average.

Median Filter. Median filtering is a nonlinear signal processing technique devel-
oped by Tukey (21) that is useful for noise suppression in images. In one-dimen-
sional form, the median filter consists of a sliding window encompassing an odd
number of pixels. The center pixel in the window is replaced by the median of the
pixels in the window. The median of a discrete sequence ay, aj,..., ay for N odd is
that member of the sequence for which (N — 1)/2 elements are smaller or equal in
value and (N — 1)/2 elements are larger or equal in value. For example, if the values
of the pixels within a window are 0.1, 0.2, 0.9, 0.4, 0.5, the center pixel would be
replaced by the value 0.4, which is the median value of the sorted sequence 0.1, 0.2,
0.4, 0.5, 0.9. In this example, if the value 0.9 were a noise spike in a monotonically
increasing sequence, the median filter would result in a considerable improvement.
On the other hand, the value 0.9 might represent a valid signal pulse for a wide-
bandwidth sensor, and the resultant image would suffer some loss of resolution.
Thus, in some cases the median filter will provide noise suppression, while in other
cases it will cause signal suppression.

Figure 10.3-11 illustrates some examples of the operation of a median filter and a
mean (smoothing) filter for a discrete step function, ramp function, pulse function
and a triangle function with a window of five pixels. It is seen from these examples
that the median filter has the usually desirable property of not affecting step func-
tions or ramp functions. Pulse functions, whose periods are less than one-half the
window width, are suppressed. But the peak of the triangle is flattened.

Operation of the median filter can be analyzed to a limited extent. It can be
shown that the median of the product of a constant K and a sequence f(j) is

MED{K[f(/))]} = KIMED{f(j)}] (10.3-7)

However, for two arbitrary sequences f(j) and g(j), it does not follow that the
median of the sum of the sequences is equal to the sum of their medians. That is, in
general,

MED{f(j) + g(j)} # MED{f(j)} + MED{g(j)} (10.3-8)

The sequences 0.1, 0.2, 0.3, 0.4, 0.5 and 0.1, 0.2, 0.3, 0.2, 0.1 are examples for
which the additive linearity property does not hold.
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ORIGINAL MEAN FILTERED MEDIAN FILTERED
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FIGURE 10.3-11. Median filtering on one-dimensional test signals.

There are various strategies for application of the median filter for noise sup-
pression. One method would be to try a median filter with a window of length 3.
If there is no significant signal loss, the window length could be increased to 5
for median filtering of the original. The process would be terminated when the
median filter begins to do more harm than good. It is also possible to perform
cascaded median filtering on a signal using a fixed-or variable-length window. In
general, regions that are unchanged by a single pass of the filter will remain
unchanged in subsequent passes. Regions in which the signal period is lower
than one-half the window width will be continually altered by each successive
pass. Usually, the process will continue until the resultant period is greater than
one-half the window width, but it can be shown that some sequences will never
converge (22).

The concept of the median filter can be extended easily to two dimensions by uti-
lizing a two-dimensional window of some desired shape such as a rectangle or dis-
crete approximation to a circle. It is obvious that a two-dimensional L x L median
filter will provide a greater degree of noise suppression than sequential processing
with L x 1 median filters, but two-dimensional processing also results in greater sig-
nal suppression. Figure 10.3-12 illustrates the effect of two-dimensional median
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filtering of a spatial peg function with a 3 x 3 square filter and a 5x35 plus sign—
shaped filter. In this example, the square median has deleted the corners of the peg,
but the plus median has not affected the corners.

FIGURE 10.3-12. Median filtering on two-dimensional test signals.

Figures 10.3-13 and 10.3-14 show results of plus sign-shaped median filtering on
the noisy test images of Figure 10.3-1 for impulse and uniform noise, respec-
tively. In the impulse noise example, application of the 3 x 3 median significantly
reduces the noise effect, but some residual noise remains. Applying two 3x3
median filters in cascade provides further improvement. The 5x5 median filter
removes almost all of the impulse noise. There is no visible impulse noise in the
7 x7 median filter result, but the image has become somewhat blurred. In the case
of uniform noise, median filtering provides little visual improvement.

Huang et al. (23) and Astola and Campbell (24) have developed fast median fil-
tering algorithms. The latter can be generalized to implement any rank ordering.
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(a) 3 x 3 median filter (b) 3 x 3 cascaded median filter

() 5 x 5 median filter (d) 7 x 7 median filter

FIGURE 10.3-13. Median filtering on the noisy test image with uniform noise.

Pseudomedian Filter. Median filtering is computationally intensive; the number of
operations grows exponentially with window size. Pratt et al. (25) have proposed a
computationally simpler operator, called the pseudomedian filter, which possesses
many of the properties of the median filter.

Let {S;} denote a sequence of elements sy, 5...., 5. The pseudomedian of the
sequence is

PMED{S,} = (1/2)MAXIMIN{S, } + (1/2)MINIMAX{S,}  (10.3-9)
where for M = (L + 1)/2

MAXIMIN{S, } = MAX{[MIN(s}, ..., 5;) 1, IMIN(55, .0y 53, )]

oo IMINGS; s ps ooes S (10.3-10a)
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(@) 3 x 3 median filter

(b) 5 x 5 median filter (c) 7 x 7 median filter

FIGURE 10.3-14. Median filtering on the noisy test image with uniform noise.

MINIMAX{S,} = MIN{[MAX(s}, ..., 5) 1, IMAX (53, .0 3y 4 1)]

o IMAX(S, gy s S)1 (10.3-10b)

Operationally, the sequence of L elements is decomposed into subsequences of M
elements, each of which is slid to the right by one element in relation to its
predecessor, and the appropriate MAX and MIN operations are computed. As will
be demonstrated, the MAXIMIN and MINIMAX operators are, by themselves,
useful operators. It should be noted that it is possible to recursively decompose the
MAX and MIN functions on long sequences into sliding functions of length 2 and 3
for pipeline computation (25).



282 IMAGE ENHANCEMENT

The one-dimensional pseudomedian concept can be extended in a variety of
ways. One approach is to compute the MAX and MIN functions over rectangular
windows. As with the median filter, this approach tends to over smooth an image.
A plus-shape pseudomedian generally provides better subjective results. Con-
sider a plus-shaped window containing the following two-dimensional set ele-
ments {Sg}

Y1

Xy oeee Xy -ee X

YR

Let the sequences { X} and {Yg} denote the elements along the horizontal and ver-
tical axes of the window, respectively. Note that the element x;; is common to both
sequences. Then the plus-shaped pseudomedian can be defined as

PMED{S,} = (1/2)MAX[MAXIMIN{X}, MAXIMIN{Y}]

+(1/2) MIN [MINIMAX{X}, MINIMAX{ Y,}]
(10.3-11)

The MAXIMIN operator in one- or two-dimensional form is useful for removing
bright impulse noise but has little or no effect on dark impulse noise. Conversely, the
MINIMAX operator does a good job in removing dark, but not bright, impulse
noise. A logical conclusion is to cascade the operators.

Figure 10.3-15 shows the results of MAXIMIN, MINIMAX and pseudomedian
filtering on an image subjected to salt and pepper noise. As observed, the
MAXIMIN operator reduces the salt noise, while the MINIMAX operator reduces
the pepper noise. The pseudomedian provides attenuation for both types of noise.
The cascade MINIMAX and MAXIMIN operators, in either order, show excellent
results.
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(a) Original (b) MAXIMIN
(c) MINIMAX (d) Pseudomedian
(e) MINIMAX of MAXIMIN (fy MAXIMIN of MINIMAX

FIGURE 10.3-15. 5 x5 plus-shape MINIMAX, MAXIMIN and pseudomedian filtering on
the noisy test images.
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Wavelet Denoising. Section 8.4-3 introduced wavelet transforms. The usefulness of
wavelet transforms for image coding derives from the property that most of the
energy of a transformed image is concentrated in the trend transform coefficients
rather than the fluctuation coefficients (26). The fluctuation coefficients may be
grossly quantized without serious image degradation. This energy compaction prop-
erty can also be exploited for noise removal. The basic concept, called wavelet
denoising (26,27), is quite simple. The wavelet transform coefficients are thresh-
olded such that the presumably noisy, low-amplitude coefficients are set to zero.

Zhong and Ning (28) have developed a method of classifying wavelet coefficients
as being edge-related, regular coefficients or irregular coefficients based upon a
measurement of the local statistical self-similarity at different resolution scales. The
irregular coefficients are denoised using a minimum mean-squared error estimation
method; the edge-related, regular coefficients are processed by a fuzzy weighted
mean filter. Balster et al. (29) have proposed a two-threshold wavelet coefficient
selection method. The first threshold is used to distinguish coefficients of large mag-
nitude, and the second threshold is used to distinguish coefficients of spatial regular-
ity, which are then selected for reconstruction. Both algorithms have been reported
to provide good denoising results (28,29).

Adaptive Processing. Several methods of adaptive denoising have been developed.
Eng and Ma (30) employ a first stage noise detection process to identify pixels that
are to undergo no filtering, standard median filtering or fuzzy weighted median fil-
tering in the second stage. Chan et al. (31) have proposed a two-stage scheme in
which an adaptive median filter is used to identify pixels that are likely to have been
contaminated by noise. In the second stage, the noise candidates are smoothed using
a regularization algorithm.

10.4. EDGE CRISPENING

Psychophysical experiments indicate that a photograph or visual signal with
accentuated or crispened edges is often more subjectively pleasing than an exact
photometric reproduction. Edge crispening can be accomplished in a variety of ways.

10.4.1. Linear Edge Crispening

Edge crispening can be performed by discrete convolution, as defined by Eq. 10.3-1,
in which the impulse response array H is of high-pass form. Several common 3 x 3
high-pass masks are given below (32-34).

Mask 1:

H=|_, 5 1 (10.4-1a)
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Mask 2:
[P
H=|_, o (10.4-1b)
-1 -1 -1
Mask 3:
1 2
H = ) 5 -2 (10.4-1¢c)
12 1

These masks possess the property that the sum of their elements is unity, to avoid
amplitude bias in the processed image. Figure 10.4-1 provides examples of edge
crispening on a monochrome image with the masks of Eq. 10.4-1. Mask 2 appears to
provide the best visual results.

(a) Original (b) Mask 1

(c) Mask 2 (d) Mask 3

FIGURE 10.4-1. Edge crispening with 3 X 3 masks on the chest xray image.
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To obtain edge crispening on electronically scanned images, the scanner signal
can be passed through an electrical filter with a high-frequency bandpass character-
istic. Another possibility for scanned images is the technique of unsharp masking
(35,36). In this process, the image is effectively scanned with two overlapping aper-
tures, one at normal resolution and the other at a lower spatial resolution, which
upon sampling produces normal and low-resolution images F(j, k) and F,(j,k),
respectively. An unsharp masked image

G(j, k) = ﬁ F(j, k) - =—5F, (j, k) (10.4-2)

1
2¢c—1

is then generated by forming the weighted difference between the normal and low-
resolution images, where c is a weighting constant. Typically, c is in the range 3/5 to
5/6, so that the ratio of normal to low-resolution components in the masked image is
from 1.5:1 to 5:1. Figure 10.4-2 illustrates typical scan signals obtained when scan-
ning over an object edge. The masked signal has a longer-duration edge gradient as
well as an overshoot and undershoot, as compared to the original signal. Subjec-
tively, the apparent sharpness of the original image is improved. Figure 10.4-3
presents examples of unsharp masking in which the low-resolution image is
obtained by convolution with a uniform L x L impulse response array. The sharpen-
ing effect is stronger as L increases and ¢ decreases.

e

(a) Normal resolution

_

(b) Low resolution

-/

(¢) Unsharp masking

FIGURE 10.4-2. Waveforms in an unsharp masking image enhancement system.
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(aL=3,c=0.6 () L=3,¢c=0.8

() L=7,c=0.6 (d)L=7,¢=0.8

FIGURE 10.4-3. Unsharp mask processing for L x L uniform low-pass convolution on the
chest_ xray image.

Edge crispening using an unsharp masking operator is sensitive to image noise.
Polesel et al. (37) have developed an adaptive unsharp masking filter in which con-
trast enhancement occurs in high detail regions of an image; little or no image sharp-
ening occurs in smooth areas.

Linear edge crispening can be performed by Fourier domain filtering. A zonal
high-pass filter with a transfer function given by Eq. 9.4-10 suppresses all spatial
frequencies below the cutoff frequency except for the dc component, which is neces-
sary to maintain the average amplitude of the filtered image. Figure 10.4-4 shows
the result of zonal high-pass filtering of an image. Zonal high-pass filtering often
causes ringing in a filtered image. Such ringing can be reduced significantly by utili-
zation of a high-pass filter with a smooth cutoff response. One such filter is the
Butterworth high-pass filter, whose transfer function is defined by Eq. 9.4-13.

Figure 10.4-4 shows the results of zonal and Butterworth high-pass filtering. In
both examples, the filtered images are biased to a midgray level for display.
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(a) Zonal filtering (b) Butterworth filtering

FIGURE 10.4-4. Zonal and Butterworth high-pass filtering on the chest xray image;
cutoff frequency = 32.

10.4.2. Statistical Differencing

Another form of edge crispening, called statistical differencing (38, p. 100),
involves the generation of an image by dividing each pixel value by its estimated
standard deviation D(j, k) according to the basic relation

G(j k) = L% (10.4-3)

where the estimated standard deviation

1 j+w k+w 21/2
D(j, k) = W z z [F(m,n)—M(m, n)) (10.4-4)

m=j-w n=k-w

is computed at each pixel over some Wx W neighborhood where W = 2w + 1. The
function M(j, k) is the estimated mean value of the original image at point (j, k),
which is computed as

j+w k+w
MGk = Y Y Fmn) (10.4-5)
w m=j-w n=k-w
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The enhanced image G(j, k) is increased in amplitude with respect to the original at
pixels that deviate significantly from their neighbors, and is decreased in relative
amplitude elsewhere. The process is analogous to automatic gain control for an
audio signal.

Wallis (39) has suggested a generalization of the statistical differencing operator
in which the enhanced image is forced to a form with desired first- and second-order
moments. The Wallis operator is defined by

. _ . . Amade .
G(j, k) = [F(j, k) -M(j, k)] A DG.0+D, +[pMy+ (1 -p)M(j, k)1 (10.4-6)

where M, and D, represent desired average mean and standard deviation factors,
A« 18 @ maximum gain factor that prevents overly large output values when
D(j, k) is small and 0.0<p<1.0 is a mean proportionality factor controlling the
background flatness of the enhanced image.

The Wallis operator can be expressed in a more general form as
G(j, k) = [F(J, k)-M(j, )]A(j, k) + B(j, k) (10.4-7)

where A(j, k) is a spatially dependent gain factor and B(j, k) is a spatially depen-
dent background factor. These gain and background factors can be derived directly
from Eq. 10.4-6, or they can be specified in some other manner. For the Wallis oper-
ator, it is convenient to specify the desired average standard deviation D, such that
the spatial gain ranges between maximum A, ,, and minimum A _;,, limits. This can
be accomplished by setting D to the value

A A D
Dd — min max — max (10.4_8)

Amax_Amin

where D, is the maximum value of D(j, k) . The summations of Eqgs. 10.4-4 and
10.4-5 can be implemented by convolutions with a uniform impulse array. But, over-
shoot and undershoot effects may occur. Better results are usually obtained with a
pyramid or Gaussian-shaped array.

Figure 10.4-5 shows the mean, standard deviation, spatial gain and Wallis statisti-
cal differencing result on a monochrome image. Figure 10.4-6 presents a medical
imaging example.
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(a) Original (b) Mean, 0.00 to 0.98
(c) Standard deviation, 0.01 to 0.26 (d) Background, 0.09 to 0.88
(e) Spatial gain, 0.75 to 2.35 (f) Wallis enhancement, — 0.07 to 1.12

FIGURE 10.4-5. Wallis statistical differencing on the bridge image for M ;= 0.45,
D;=0.28, p=0.20, A = 2.50, A = 0.75 using a 9 X 9 pyramid array.
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(a) Original (b) Wallis enhancement

FIGURE 10.4-6. Wallis statistical differencing on the chest xray image for M ;= 0.64,
D;=0.22, p=0.20, Ajpax = 2.50, Apin = 0.75 using a 11 x 11 pyramid array.

10.5. COLOR IMAGE ENHANCEMENT

The image enhancement techniques discussed previously have all been applied to
monochrome images. This section considers the enhancement of natural color
images and introduces the pseudocolor and false color image enhancement methods.
In the literature, the terms pseudocolor and false color have often been used improp-
erly. Pseudocolor produces a color image from a monochrome image, while false
color produces an enhanced color image from an original natural color image or
from multispectral image bands.

10.5.1. Natural Color Image Enhancement

The monochrome image enhancement methods described previously can be
applied to natural color images by processing each color component individu-
ally. This comprises the class of intracomponent processing algorithms. There is
also a class of inter-component processing algorithms in which color pixels are
combined on a pixel-by-pixel basis. Finally, there is a class of vector processing
algorithms.

Intracomponent Processing. Typically, color images are processed in the RGB
color space. This approach works quite well for noise cleaning algorithms in which
the noise is independent between the R, G and B components. Edge crispening can
also be performed on an intracomponent basis, but better, and more efficient, results,
are often obtained by processing in other color spaces. Contrast manipulation and
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histogram modification intracomponent algorithms often result in severe shifts of
the hue and saturation of color images. Hue preservation can be achieved by using a
single point transformation for each of the three RGB components (40). For exam-
ple, form a sum image S = R+ G + B, and then compute a histogram equalization
function, which is used for each RGB component.

For some image enhancement algorithms, there are computational advantages to
processing in a luma-chroma space, such as YC,C,, or a lightness-chrominance
space, such as L*a*b* . As an example, if the objective is to perform edge crispening
of a color image, it is usually only necessary to apply the enhancement method to
the luma or lightness component. Because of the high-spatial-frequency response
limitations of human vision, edge crispening of the chroma or chrominance compo-
nents may not be perceptible.

Faugeras (41) has investigated color image enhancement in a perceptual space
based on a color vision model similar to the model presented in Figure 2.5-3. The
procedure is to transform a RGB tristimulus value original image according to
the color vision model to produce a set of three perceptual space images that, ide-
ally, are perceptually independent. Then, an image enhancement method is applied
independently to the perceptual space images. Finally, the enhanced perceptual
space images are subjected to steps that invert the color vision model and produce an
enhanced color image represented in RGB color space.

Intercomponent Processing. The intracomponent processing algorithms previously
discussed provide no means of modifying the hue and saturation of a processed
image in a controlled manner. One means of doing so is to transform a source RGB
image into a three component image, in which the three components form separate
measures of the brightness, hue and saturation (BHS) of a color image. Ideally, the
three components should be perceptually independent of one another. Once the BHS
components are determined, they can be modified by amplitude scaling methods, as
described, in Sec. 10.1.1.

The IHS color coordinate system defined by Eq. 3.5-20 has been proposed for
non-standard color images. There are no standard colorimetric definitions for hue
and saturation measures. However, the following ad hoc definition for the L*a*b*
color coordinate system of Eq. 3.5-6 can be utilized:

B =L* (10.5-1a)

=
Il

arctan{ﬁ} (10.5-1b)

a®

th
|

= [a* +b*]"? (10.5-1¢)
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Color Vector Processing. As shown in Figure 3.3-2, a color vector v = [R, G, B]T
can be formed in three-dimensional color space based upon the R, G and B color
components at each pixel (j, k). Now consider a moving window about the (j, k)
pixel, which contains a sequence of color vectors vy, vs,...,vy. For example, for a
3 x 3 window, the neighborhood array is:

ViVa V3

V4 V5 V6
V7 Vg Vo

For natural, noise-free images with a relatively small window, the vectors v,, will
be similar in magnitude and direction. For images subject to noise, some of the
vectors may differ significantly from one another. Astola, Haavisto and Neuvo
(42) have proposed a vector median filter (VMF) as a means of color image
denoising. The vector in the window center is replaced by the median of all of the
vectors in the window. References 42 to 44 discuss various sorting algorithms for
computation of the VMEF.

10.5.2. Pseudocolor

Pseudocolor (45—47) is a color mapping of a monochrome image array which is
intended to enhance the detectability of detail within the image. The pseudocolor
mapping of an array F(j, k) is defined as

R(j, k) = Op{F(j,k)} (10.5-2a)
G, k) = OG{F(j, k) } (10.5-2b)
B(j, k) = Op{F(j,k)} (10.5-2c¢)

where R(j, k), G(j,k), B(j, k) are display color components and Op{F(j,k)},
OG{F(j.k)}, Og{F(j,k)} are linear or nonlinear functional operators. This map-
ping defines a path in three-dimensional color space parametrically in terms of the
array F(j, k). Figure 10.5-1 illustrates the RGB color space and two color mappings
that originate at black and terminate at white. Mapping A represents the achromatic
path through all shades of gray; it is the normal representation of a monochrome
image. Mapping B is a spiral path through color space.
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A RED

BLUE

FIGURE 10.5-1. Black-to-white and RGB perimeter pseudocolor mappings.

Another class of pseudocolor mappings includes those mappings that exclude
all shades of gray. Mapping C, which follows the edges of the RGB color cube, is
such an example. This mapping follows the perimeter of the gamut of reproduc-
ible colors as depicted by the uniform chromaticity scale (UCS) chromaticity
chart shown in Figure 10.5-2. The luminances of the colors red, green, blue, cyan,
magenta and yellow that lie along the perimeter of reproducible colors are noted in
the figure. It is seen that the luminance of the pseudocolor scale varies between a
minimum of 0.114 for blue to a maximum of 0.886 for yellow. A maximum lumi-
nance of unity is reached only for white. In some applications, it may be desirable
to fix the luminance of all displayed colors so that discrimination along the
pseudocolor scale is by hue and saturation attributes of a color only. Loci of con-
stant luminance are plotted in Figure 10.5-2.

Figure 10.5-2 also includes bounds for displayed colors of constant luminance.
For example, if the RGB perimeter path is followed, the maximum luminance of
any color must be limited to 0.114, the luminance of blue. At a luminance of 0.2,
the RGB perimeter path can be followed except for the region around saturated
blue. At higher luminance levels, the gamut of constant luminance colors becomes
severely limited. Figure 10.5-2b is a plot of the 0.5 luminance locus. Inscribed
within this locus is the locus of those colors of largest constant saturation. A
pseudocolor scale along this path would have the property that all points differ
only in hue.

With a given pseudocolor path in color space, it is necessary to choose the
scaling between the data plane variable and the incremental path distance. On the
UCS chromaticity chart, incremental distances are subjectively almost equally
noticeable.
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(b) Locus of luminance ¥ = 0.5

FIGURE 10.5-2. Luminance loci for NTSC colors.

Therefore, it is reasonable to subdivide geometrically the path length into equal

increments. Figure 10.5-3 shows examples of pseudocoloring of a gray scale chart
image and a seismic image.
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(a) Gray scale chart (b) Pseudocolor of chart

(c) Seismic (d) Pseudocolor of seismic

FIGURE 10.5-3. Pseudocoloring of the gray chart and seismic images. See insert for
a color representation of this figure.

10.5.3. False Color

False color is a point-by-point mapping of an original color image, described by its
three primary colors, or of a set of multispectral image planes of a scene, to a color
space defined by display tristimulus values that are linear or nonlinear functions of
the original image pixel values (48,49). A common intent is to provide a displayed
image with objects possessing different or false colors from what might be
expected. For example, blue sky in a normal scene might be converted to appear
red, and green grass transformed to blue. One possible reason for such a color map-
ping is to place normal objects in a strange color world so that a human observer
will pay more attention to the objects than if they were colored normally.
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Another reason for false color mappings is the attempt to color a normal scene to
match the color sensitivity of a human viewer. For example, it is known that the
luminance response of cones in the retina peaks in the green region of the visible
spectrum. Thus, if a normally red object is false colored to appear green, it may
become more easily detectable. Another psychophysical property of color vision
that can be exploited is the contrast sensitivity of the eye to changes in blue light. In
some situation it may be worthwhile to map the normal colors of objects with fine
detail into shades of blue.

A third application of false color is to produce a natural color representation of a
set of multispectral images of a scene. Some of the multispectral images may even
be obtained from sensors whose wavelength response is outside the visible wave-
length range, for example, infrared or ultraviolet.

In a false color mapping, the red, green and blue display color components are
related to natural or multispectral images F; by

Ry = Og{F,, Fy ...} (10.5-3a)
Gp = O{F,, Fy ..} (10.5-3b)
By, = Og{F,F, ..} (10.5-3¢)

where Op{-}, Og{-}, Op{-} are general functional operators. As a simple exam-
ple, the set of red, green and blue sensor tristimulus values (R = F,, Gy = F,,
By = F;) may be interchanged according to the relation

Rp 0 1 0 ||R
Gp| =10 0 1 ||Gs (10.5-4)
B 1 0 || Bg

Green objects in the original will appear red in the display, blue objects will appear
green and red objects will appear blue. A general linear false color mapping of natu-
ral color images can be defined as

Rp my omy, o myy || Ry
Gp | = | my my my || Gg (10.5-5)
Bp My3  m3y  msz || By

This color mapping should be recognized as a linear coordinate conversion of colors
reproduced by the primaries of the original image to a new set of primaries.
Figure 10.5-4 provides examples of false color mappings of a pair of images.
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s I . “ s
—Landeat Infrared Sans
(a) Infrared band (b) Blue band

(¢) R=infrared, G=0, B=blue  (d) R=infrared, G= 1/2 [infrared + blue], B = blue

FIGURE 10.5-4. False coloring of multispectral images. See insert for a color representation
of this figure.

10.6. MULTISPECTRAL IMAGE ENHANCEMENT

Enhancement procedures are often performed on multispectral image bands of a
scene in order to accentuate salient features to assist in subsequent human interpre-
tation or machine analysis (43-45). These procedures include individual image band
enhancement techniques, such as contrast stretching, noise cleaning and edge crisp-
ening, as described earlier. Other methods, considered in this section, involve the
joint processing of multispectral image bands.

Multispectral image bands can be subtracted in pairs according to the relation

D, G, k) = F,(j, k)= F,(J, k) (10.6-1)

in order to accentuate reflectivity variations between the multispectral bands. An
associated advantage is the removal of any unknown but common bias components
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that may exist. Another simple but highly effective means of multispectral image
enhancement is the formation of ratios of the image bands. The ratio image between
the mth and nth multispectral bands is defined as

F,(j, k)
F, (k)

n

Ry, Ui k) = (10.6-2)

It is assumed that the image bands are adjusted to have nonzero pixel values. In many
multispectral imaging systems, the image band F,(j, k) can be modeled by the prod-
uct of an object reflectivity function R, (j, k) and an illumination function I(j, k) that
is identical for all multispectral bands. Ratioing of such imagery provides an auto-
matic compensation of the illumination factor. The ratio F, (j, k)/[F,(j, k) £ A(j, k)],
for which A(j, k) represents a quantization level uncertainty, can vary considerably if
F,(j, k) is small. This variation can be reduced significantly by forming the logarithm
of the ratios defined by

L, .U, k) =log{R, ,(j,k)} = log{F,(j, k) } —log{F,(j, k)} (10.6-3)

There are a total of N(N — 1) different difference or ratio pairs that may be formed
from N multispectral bands. To reduce the number of combinations to be considered,
the differences or ratios are often formed with respect to an average image field:

N
AG k) = < Y FGk) (10.6-4)

n=1

==

Unitary transforms between multispectral planes have also been employed as a
means of enhancement. For N image bands, a N x 1 vector

- FG .
Fy(j, k)

X = . (10.6-5)

| Fy(Jj, k) |
is formed at each coordinate (j, k). Then, a transformation
y = Ax (10.6-6)

is formed where A is a N x N unitary matrix. A common transformation is the prin-
cipal components decomposition, described in Appendix A1.2, in which the rows of
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the matrix A are composed of the eigenvectors of the covariance matrix Ky between
the bands. The matrix A performs a diagonalization of the covariance matrix Ky
such that the covariance matrix of the transformed imagery bands

K, = AKA" = A (10.6-7)
is a diagonal matrix A whose elements are the eigenvalues of K, arranged in
descending value. The principal components decomposition, therefore, results in a
set of decorrelated data arrays whose energies are ranged in amplitude. This process,
of course, requires knowledge of the covariance matrix between the multispectral
bands. The covariance matrix must be either modeled, estimated or measured. If the
covariance matrix is highly nonstationary, the principal components method
becomes difficult to utilize.

Figure 10.6-1 contains a set of four multispectral images, and Figure 10.6-2
exhibits their corresponding log ratios (50). Principal components bands of these
multispectral images are illustrated in Figure 10.6-3 (50).

(a) Band 4 (green) (b) Band 5 (red)

(c) Band 6 (infrared 1) (d) Band 7 (infrared 2)
FIGURE 10.6-1. Multispectral images.
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(@) Band 4 (b) Band 4
Band 5 Band 6
Band 4 Band 5

Cc) —————

@ Band 7 (a) Band 6

(@) Band 5 ) Band 6
Band 7 Band 7

FIGURE 10.6-2. Logarithmic ratios of multispectral images.

301



302

IMAGE ENHANCEMENT
(a) First band (b) Second band
(c) Third band (d) Fourth band

FIGURE 10.6-3. Principal components of multispectral images.
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IMAGE RESTORATION MODELS

Image restoration may be viewed as an estimation process in which operations are
performed on an observed or measured image field to estimate the ideal image field
that would be observed if no image degradation were present in an imaging system.
Mathematical models are described in this chapter for image degradation in general
classes of imaging systems. These models are then utilized in the next chapter as a
basis for the development of image restoration techniques.

11.1. GENERAL IMAGE RESTORATION MODELS

In order effectively to design a digital image restoration system, it is necessary
quantitatively to characterize the image degradation effects of the physical imaging
system, the image digitizer and the image display. Basically, the procedure is to
model the image degradation effects and then perform operations to undo the model
to obtain a restored image. It should be emphasized that accurate image modeling is
often the key to effective image restoration. There are two basic approaches to the
modeling of image degradation effects: a priori modeling and a posteriori model-
ing. In the former case, measurements are made on the physical imaging system,
digitizer and display to determine their response for an arbitrary image field. In
some instances, it will be possible to model the system response deterministically,
while in other situations it will only be possible to determine the system response in
a stochastic sense. The a posteriori modeling approach is to develop the model for
the image degradations based on measurements of a particular image to be restored.

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.
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FIGURE 11.1-1. Digital image restoration model.

Basically, these two approaches differ only in the manner in which information is
gathered to describe the character of the image degradation.

Figure 11.1-1 shows a general model of a digital imaging system and restoration
process. In the model, a continuous image light distribution C(x, y, 7, A) dependent on
spatial coordinates (x, y), time (f) and spectral wavelength (A) is assumed to exist as
the driving force of a physical imaging system subject to point and spatial degradation
effects and corrupted by deterministic and stochastic disturbances. Potential degrada-
tions include diffraction in the optical system, sensor nonlinearities, optical system
aberrations, film nonlinearities, atmospheric turbulence effects, image motion blur
and geometric distortion. Noise disturbances may be caused by electronic imaging
sensors or film granulanty In this model, the physical imaging system produces a set
of output image fields F (x y,1;) attime instant ; described by the general relation

Fgl(x.y.1) = Op{Clx,y, 1. 1)} (A1.1-1)

where Op,{-} represents a general operator that is dependent on the space coordi-
nates (x, y), the time history (7), the wavelength (A) and the amplitude of the light
distribution (C). For a monochrome imaging system, there will only be a single out-
put field, while for a natural color imaging system, Fg)(x, v, tj) may denote the red,
green and blue tristimulus bands for i = 1, 2, 3, respectively. Multispectral imagery
will also involve several output bands of data. '

In the general model of Figure 11.1-1, each observed image field F(')(x y.1;) is
digitized, followmg the techniques outlined in Part 2, to produce an array of i 1mage
samples F (ml, my, 1;) at each time instant ;. The output samples of the digitizer
are related to the 1nput observed field by

FQ(my.my, 1) = OGLFG (x,y.1)} (11.1-2)

where O;{ -} is an operator modeling the image digitization process.
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A digital image restoration system that follows produces an output array
F%)(kl, ks, zj) by the transformation

FO(ky, &y, ) = ORLFY (m, m,, £)} (11.1-3)

where Op{-} represents the designed restoration operator. Next, the output samples
of the digital restoration system are interpolated by the image display system to pro-
duce a continuous image estimate F§ )(x y.1;) . This operation is governed by the
relation

2 (1) i
Fi' (v, 1) = Op{F (k) Ky, 1)} (11.1-4)

where O,{ -} models the display transformation.

The function of the digital image restoration system is to compensate for degra-
dations of the physical imaging system, the digitizer and the i 1mage display system to
produce an estimate of a hypothetical ideal image field F (x y,1;) that would be
displayed if all physical elements were perfect. The perfect imaging system would
produce an ideal image field modeled by

F () = OI{J:jg_TC(x,y, 1, MU (1, M) d"”‘} (11.1-5)

where U,(t, ) is a desired temporal and spectral response function, 7'is the observa-
tion period and O,{ -} is a desired point and spatial response function.

Usually, it will not be possible to restore perfectly the observed image such that
the output image field is identical to the ideal image field. The design objective of
the image restoratlon processor is to minimize some error measure between
F(’)(x ¥ 1) and F, (x Y1) The discussion here is limited, for the most part, to a
con31derat10n of techmques that minimize the mean-square error between the ideal
and estimated image fields as defined by

(i) ~ (i) 2
fl' = E{[F[ (xry, [J')_FI (X,)’y tj)] } (111_6)

where E{-} denotes the expectation operator. Often, it will be desirable to place
side constraints on the error minimization, for example, to require that the image
estimate be strictly positive if it is to represent light intensities that are positive.



310 IMAGE RESTORATION MODELS

Because the restoration process is to be performed digitally, it is often more con-
venient to restrict the error measure to discrete points on the ideal and estimated
image fields. These discrete arrays are obtained by mathematical models of perfect
image digitizers that produce the arrays

s ) = 0y seonAyoms) (LT
I"";i)(nly ny, lj) = ﬁﬁi)(xy Vs l])s(x_nlA’ y—nzA) (11.1-7b)

It is assumed that continuous image fields are sampled at a spatial period A satisfy-
ing the Nyquist criterion. Also, quantization error is assumed negligible. It should be
noted that the processes indicated by the blocks of Figure 11.1-1 above the dashed
division line represent mathematical modeling and are not physical operations per-
formed on physical image fields and arrays. With this discretization of the continu-
ous ideal and estimated image fields, the corresponding mean-square restoration
error becomes

i (i 2
£ = E{[F,()(nl,nz, 1) =F[(nyny 1)] } (11.1-8)

With the relationships of Figure 11.1-1 quantitatively established, the restoration
problem may be formulated as follows:

Given the sampled observation Fg’)(ml, m,, zj) expressed in terms of the image
light distribution C(x, y, 1, 1), determine the transfqr function Og{-} that mini-
mizes the error measure between Fﬁ’)(x, v, zj) and F,( l)(x, v, zj) subject to desired
constraints.

There are no general solutions for the restoration problem as formulated above
because of the complexity of the physical imaging system. To proceed further, it is
necessary to be more specific about the type of degradation and the method of resto-
ration. The following sections describe models for the elements of the generalized
imaging system of Figure 11.1-1.

11.2. OPTICAL SYSTEMS MODELS

One of the major advances in the field of optics during the past 50 years has been the
application of system concepts to optical imaging. Imaging devices consisting of
lenses, mirrors, prisms and so on, can be considered to provide a deterministic trans-
formation of an input spatial light distribution to some output spatial light distribu-
tion. Also, the system concept can be extended to encompass the spatial propagation
of light through free space or some dielectric medium.



OPTICAL SYSTEMS MODELS 311

FIGURE 11.2-1. Generalized optical imaging system.

In the study of geometric optics, it is assumed that light rays always travel in a
straight-line path in a homogeneous medium. By this assumption, a bundle of rays
passing through a clear aperture onto a screen produces a geometric light projection
of the aperture. However, if the light distribution at the region between the light and
dark areas on the screen is examined in detail, it is found that the boundary is not
sharp. This effect is more pronounced as the aperture size is decreased. For a pinhole
aperture, the entire screen appears diffusely illuminated. From a simplistic view-
point, the aperture causes a bending of rays called diffraction. Diffraction of light
can be quantitatively characterized by considering light as electromagnetic radiation
that satisfies Maxwell's equations. The formulation of a complete theory of optical
imaging from the basic electromagnetic principles of diffraction theory is a complex
and lengthy task. In the following, only the key points of the formulation are pre-
sented; details may be found in References 1 to 3.

Figure 11.2-1 is a diagram of a generalized optical imaging system. A point in
the object plane at coordinate (x,,y,) of intensity 7 (x,,y) radiates energy toward
an imaging system characterized by an entrance pupil, exit pupil and intervening
system transformation. Electromagnetic waves emanating from the optical system
are focused to a point (x,y;) on the image plane producing an intensity I,(x; y,).
The imaging system is said to be diffraction limited if the light distribution at the
image plane produced by a point-source object consists of a converging spherical
wave whose extent is limited only by the exit pupil. If the wavefront of the electro-
magnetic radiation emanating from the exit pupil is not spherical, the optical system
is said to possess aberrations.

In most optical image formation systems, the optical radiation emitted by an
object arises from light transmitted or reflected from an incoherent light source.
The image radiation can often be regarded as quasi monochromatic in the sense
that the spectral bandwidth of the image radiation detected at the image plane is
small with respect to the center wavelength of the radiation. Under these joint
assumptions, the imaging system of Figure 11.2-1 will respond as a linear system
in terms of the intensity of its input and output fields. The relationship between the
image intensity and object intensity for the optical system can then be represented
by the superposition integral equation
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L) = 77 HEx s 30 9 ), (g0 3,) d, d, (11.2-1)

where H(x,y; x,,y,) represents the image intensity response to a point source of
light. Often, the intensity impulse response is space invariant and the input—output
relationship is given by the convolution equation

Ly = [T 7 HG =033 ,(50 ) dxy dy, (11.2-2)

In this case, the normalized Fourier transforms

[ 1,3, y,) expliCo,x, + 0y,) ) dx, dy,
Z(0,0) = (11.2-3a)

J.:°J.:c 1,(x,,y,) dx, dy,

f:"f:“ 1i(xp, yp) expl=i(@x; + ©y;) } dx; dy,
e (11.2-3b)
fiji, I (x; y;) dx; dy;

of the object and image intensity fields are related by

Z(0,0) = H(0, 0)Z (0, o) (11.2-4)

where # (o, wy) , which is called the optical transfer function (OTF), is defined by

JZJZ H(x,y) exp{-i(®x+ (nyy)} dx dy
H(o, o) = —— (11.2-5)

J:J_Z H(x,y) dxdy

The absolute value ‘5{ (o, my)‘ of the OTF is known as the modulation transfer
Sfunction (MTF) of the optical system.

The most common optical image formation system is a circular thin lens. Figure
11.2-2 illustrates the OTF for such a lens as a function of its degree of misfocus
(1, p. 486; 4). For extreme misfocus, the OTF will actually become negative at some
spatial frequencies. In this state, the lens will cause a contrast reversal: Dark objects
will appear light, and vice versa.

Earth's atmosphere acts as an imaging system for optical radiation transversing a
path through the atmosphere. Normally, the index of refraction of the atmos-
phere remains relatively constant over the optical extent of an object, but in
some instances atmospheric turbulence can produce a spatially variable index of
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FIGURE 11.2-2. Cross section of transfer function of a lens. Numbers indicate degree of
misfocus.

refraction that leads to an effective blurring of any imaged object. An equivalent
impulse response

5/6
H(x,y) = KleXP{‘(sz2+K3 ) } (11.2-6)

where the K, are constants, has been predicted and verified mathematically by
experimentation (5) for long-exposure image formation. For convenience in analy-
sis, the function 5/6 is often replaced by unity to obtain a Gaussian-shaped impulse
response model of the form

2 2
H(x,y) = K exp{—(x—z + y_2 ]} (11.2-7)
2b, 2b;

where K is an amplitude scaling constant and b, and by are blur-spread factors.

Under the assumption that the impulse response of a physical imaging system is
independent of spectral wavelength and time, the observed image field can be mod-
eled by the superposition integral equation

FS (vt = Oc{fijic(“’ B, 1, MH(x, y; o, B) dot dB} (11.2-8)

where O.{ -} is an operator that models the spectral and temporal characteristics of
the physical imaging system. If the impulse response is spatially invariant, the
model reduces to the convolution integral equation

Fg(x,y.1) = oc{j";jicw, B, 1, X)H(x—oc,y—B)doch} (11.2-9)
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11.3. PHOTOGRAPHIC PROCESS MODELS

There are many different types of materials and chemical processes that have been
utilized for photographic image recording. No attempt is made here either to survey
the field of photography or to deeply investigate the physics of photography. Refer-
ences 6 to § contain such discussions. Rather, the attempt here is to develop mathe-
matical models of the photographic process in order to characterize quantitatively
the photographic components of an imaging system.

11.3.1. Monochromatic Photography

The most common material for photographic image recording is silver halide emul-
sion, depicted in Figure 11.3-1. In this material, silver halide grains are suspended in
a transparent layer of gelatin that is deposited on a glass, acetate or paper backing. If
the backing is transparent, a transparency can be produced, and if the backing is a
white paper, a reflection print can be obtained. When light strikes a grain, an electro-
chemical conversion process occurs, and part of the grain is converted to metallic
silver. A development center is then said to exist in the grain. In the development
process, a chemical developing agent causes grains with partial silver content to be
converted entirely to metallic silver. Next, the film is fixed by chemically removing
unexposed grains.

The photographic process described above is called a nonreversal process. It pro-
duces a negative image in the sense that the silver density is inversely proportional
to the exposing light. A positive reflection print of an image can be obtained in a
two-stage process with nonreversal materials. First, a negative transparency is pro-
duced, and then the negative transparency is illuminated to expose negative reflec-
tion print paper. The resulting silver density on the developed paper is then
proportional to the light intensity that exposed the negative transparency.

A positive transparency of an image can be obtained with a reversal type of film.
This film is exposed and undergoes a first development similar to that of a nonreversal
film. At this stage in the photographic process, all grains that have been exposed
to light are converted completely to metallic silver. In the next step, the metallic
silver grains are chemically removed. The film is then uniformly exposed to light, or
alternatively, a chemical process is performed to expose the remaining silver halide
grains. Then the exposed grains are developed and fixed to produce a positive trans-
parency whose density is proportional to the original light exposure.

FIGURE 11.3-1. Cross section of silver halide emulsion.
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The relationships between light intensity exposing a film and the density of silver
grains in a transparency or print can be described quantitatively by sensitometric
measurements. Through sensitometry, a model is sought that will predict the spec-
tral light distribution passing through an illuminated transparency or reflected from
a print as a function of the spectral light distribution of the exposing light and certain
physical parameters of the photographic process. The first stage of the photographic
process, that of exposing the silver halide grains, can be modeled to a first-order
approximation by the integral equation

X(C) = kxfC(k)L(k) dr (11.3-1)

where X(C) is the integrated exposure, C(L) represents the spectral energy distribu-
tion of the exposing light, L(A) denotes the spectral sensitivity of the film or paper
plus any spectral losses resulting from filters or optical elements and &, is an expo-
sure constant that is controllable by an aperture or exposure time setting. Equation
11.3-1 assumes a fixed exposure time. Ideally, if the exposure time were to be
increased by a certain factor, the exposure would be increased by the same factor.
Unfortunately, this relationship does not hold exactly. The departure from linearity
is called a reciprocity failure of the film. Another anomaly in exposure prediction is
the intermittency effect, in which the exposures for a constant intensity light and for
an intermittently flashed light differ even though the incident energy is the same for
both sources. Thus, if Eq. 11.3-1 is to be utilized as an exposure model, it is neces-
sary to observe its limitations: The equation is strictly valid only for a fixed exposure
time and constant-intensity illumination.

The transmittance t(A) of a developed reversal or nonreversal transparency as a
function of wavelength can be ideally related to the density of silver grains by the
exponential law of absorption as given by

t(A) = exp{-d,D(A)} (11.3-2)

where D(A) represents the characteristic density as a function of wavelength for a
reference exposure value and d, is a variable proportional to the actual exposure. For
monochrome transparencies, the characteristic density function D(A) is reasonably
constant over the visible region. As Eq. 11.3-2 indicates, high silver densities result
in low transmittances, and vice versa. It is common practice to change the propor-
tionality constant of Eq. 11.3-2 so that measurements are made in exponent ten
units. Thus, the transparency transmittance can be equivalently written as

-d.D(N)

T(A) = 10 (11.3-3)

where d, is the density variable, inversely proportional to exposure, for exponent 10
units. From Eq. 11.3-3, it is seen that the photographic density is logarithmically
related to the transmittance. Thus,

d,D(A) = -log ,T(V) (11.3-4)
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The reflectivity r,(A) of a photographic print as a function of wavelength is also
inversely proportional to its silver density, and follows the exponential law of
absorption of Eq. 11.3-2. Thus, from Eqs. 11.3-3 and 11.3-4, one obtains directly

—d_D(\)

r (A = 10 (11.3-5)

d. D) = -log,, r, (W) (11.3-6)

where d, is an appropriately evaluated variable proportional to the exposure of the
photographic paper.

The relational model between photographic density and transmittance or
reflectivity is straightforward and reasonably accurate. The major problem is the
next step of modeling the relationship between the exposure X(C) and the den-
sity variable d,. Figure 11.3-2a shows a typical curve of the transmittance of a
nonreversal transparency as a function of exposure. It is to be noted that the
curve is highly nonlinear except for a relatively narrow region in the lower expo-
sure range. In Figure 11.3-2b, the curve of Figure 11.3-2a has been replotted as
transmittance versus the logarithm of exposure. An approximate linear relation-
ship is found to exist between transmittance and the logarithm of exposure, but
operation in this exposure region is usually of little use in imaging systems.

(a) (b)

(c) (9

FIGURE 11.3-2. Relationships between transmittance, density and exposure for a
nonreversal film.
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FIGURE 11.3-3. H & D curves for a reversal film as a function of development time.

The parameter of interest in photography is the photographic density variable d,
which is plotted as a function of exposure and logarithm of exposure in Figure
11.3-2¢ and 11.3-2d. The plot of density versus logarithm of exposure is known as
the H & D curve after Hurter and Driffield, who performed fundamental investiga-
tions of the relationships between density and exposure. Figure 11.3-3 is a plot of
the H & D curve for a reversal type of film. In Figure 11.3-2d, the central portion
of the curve, which is approximately linear, has been approximated by the line
defined by

d, = yllog,, X(C) - K] (11.3-7)

where v represents the slope of the line and K denotes the intercept of the line with
the log exposure axis. The slope of the curve y (gamma) is a measure of the con-
trast of the film, while the factor K is a measure of the film speed; that is, a measure
of the base exposure required to produce a negative in the linear region of the H & D
curve. If the exposure is restricted to the linear portion of the H & D curve, substitu-
tion of Eq. 11.3-7 into Eq. 11.3-3 yields a transmittance function

) = K, MIx(e) P (11.3-8a)

where

YK -D(\)

K, (W) =10 (11.3-8b)

With the exposure model of Eq. 11.3-1, the transmittance or reflection models of
Eqgs. 11.3-3 and 11.3-5, and the H & D curve, or its linearized model of Eq. 11.3-7, it
is possible mathematically to model the monochrome photographic process.
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FIGURE 11.3-4. Color film integral tripack.

11.3.2. Color Photography

Modern color photography systems utilize an integral tripack film, as illustrated in
Figure 11.3-4, to produce positive or negative transparencies. In a cross section of
this film, the first layer is a silver halide emulsion sensitive to blue light. A yellow
filter following the blue emulsion prevents blue light from passing through to the
green and red silver emulsions that follow in consecutive layers and are naturally
sensitive to blue light. A transparent base supports the emulsion layers. Upon devel-
opment, the blue emulsion layer is converted into a yellow dye transparency whose
dye concentration is proportional to the blue exposure for a negative transparency
and inversely proportional for a positive transparency. Similarly, the green and red
emulsion layers become magenta and cyan dye layers, respectively. Color prints can
be obtained by a variety of processes (7). The most common technique is to produce
a positive print from a color negative transparency onto nonreversal color paper.

In the establishment of a mathematical model of the color photographic pro-
cess, each emulsion layer can be considered to react to light as does an emulsion
layer of a monochrome photographic material. To a first approximation, this
assumption is correct. However, there are often significant interactions between
the emulsion and dye layers, Each emulsion layer possesses a characteristic sensi-
tivity, as shown by the typical curves of Figure 11.3-5. The integrated exposures of
the layers are given by

XR(C) = dRJC(x)LR(x)dx (11.3-9a)
X(0) = dg j C(ML(A) dh (11.3-9b)
Xp(C) = dy j C(MLg(L) dA (11.3-9¢)

where dg, d;, dg are proportionality constants whose values are adjusted so that the
exposures are equal for a reference white illumination and so that the film is not sat-
urated. In the chemical development process of the film, a positive transparency is
produced with three absorptive dye layers of cyan, magenta and yellow dyes.
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FIGURE 11.3-5. Spectral sensitivities of typical film layer emulsions.

The transmittance t,(A) of the developed transparency is the product of the
transmittance of the cyan t,.(}A), the magenta t,,,(A) and the yellow t,,(A) dyes.
Hence,

TN = Tre(M) Ty (M) Trp(A) (11.3-10)

The transmittance of each dye is a function of its spectral absorption characteristic
and its concentration. This functional dependence is conveniently expressed in terms
of the relative density of each dye as

*CDN(T(M

TeM) = 10 (11.3-11a)
(0 = 1070 (11.3-11b)
(0 =107 (11.3-11¢)

where ¢, m, y represent the relative amounts of the cyan, magenta and yellow dyes,
and Dy (L), Dy (X)), Dyy(X) denote the spectral densities of unit amounts of the
dyes. For unit amounts of the dyes, the transparency transmittance is

1) = 1007 (11.3-12a)

where

Dyy(A) = Dye(h) + Dy (M) + Dyy(h) (11.3-12b)
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FIGURE 11.3-6. Spectral dye densities and neutral density of a typical reversal color film.

Such a transparency appears to be a neutral gray when illuminated by a reference
white light. Figure 11.3-6 illustrates the typical dye densities and neutral density for
a reversal film.

The relationship between the exposure values and dye layer densities is, in gen-
eral, quite complex. For example, the amount of cyan dye produced is a nonlinear
function not only of the red exposure, but is also dependent to a smaller extent on
the green and blue exposures. Similar relationships hold for the amounts of magenta
and yellow dyes produced by their exposures. Often, these interimage effects can be
neglected, and it can be assumed that the cyan dye is produced only by the red expo-
sure, the magenta dye by the green exposure, and the blue dye by the yellow expo-
sure. For this assumption, the dye density—exposure relationship can be
characterized by the Hurter—Driffield plot of equivalent neutral density versus the
logarithm of exposure for each dye. Figure 11.3-7 shows a typical H & D curve for a
reversal film. In the central portion of each H & D curve, the density versus expo-
sure characteristic can be modeled as

¢ =7 log o Xp+ Ky (11.3-13a)
m =y, log,, Xg+Kpy (11.3-13b)
y =Yy log,  Xz+Kpy (11.3-13c¢)

where y., v,,, 7y, representing the slopes of the curves in the linear region, are
called dye layer gammas.
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FIGURE 11.3-7. H & D curves for a typical reversal color film.
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The spectral energy distribution of light passing through a developed transpar-
ency is the product of the transparency transmittance and the incident illumination
spectral energy distribution E(A) as given by

—[e¢Dye(M) + mDy (M) + yDyy(M)]

C,(\) = EQV10 (11.3-14)

Figure 11.3-8 is a block diagram of the complete color film recording and reproduc-
tion process. The original light with distribution C(A) and the light passing through
the transparency C; (L) at a given resolution element are rarely identical. That is, a
spectral match is usually not achieved in the photographic process. Furthermore, the
lights C and Cy usually do not even provide a colorimetric match.

11.4. DISCRETE IMAGE RESTORATION MODELS

This chapter began with an introduction to a general model of an imaging system
and a digital restoration process. Next, typical components of the imaging system
were described and modeled within the context of the general model. Now, the dis-
cussion turns to the development of several discrete image restoration models. In the
development of these models, it is assumed that the spectral wavelength response
and temporal response characteristics of the physical imaging system can be sepa-
rated from the spatial and point characteristics. The following discussion considers
only spatial and point characteristics.

After each element of the digital image restoration system of Figure 11.1-1 is
modeled, following the techniques described previously, the restoration system may
be conceptually distilled to three equations:

Observed image:

Fo(my,my) = Oy A Fy(ny, ny), Nj(my, my), ..., Ny(my, my)} (11.4-1a)

Compensated image:

Filky, ky) = Op{Fg(m;,my)} (11.4-1b)
Restored image:
Fi(ny,ny) = OplF(ky, ky)} (11.4-1c)

where Fg represents an array of observed image samples, F; and I:"I are arrays of
ideal image points and estimates, respectively, Fg is an array of compensated
image points from the digital restoration system, N; denotes arrays of noise samples
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from various system elements, and O, { -}, Ox{-}, Op{-} represent general
transfer functions of the imaging system, restoration processor and display system,
respectively. Vector-space equivalents of Eq. 11.4-1 can be formed for purposes of
analysis by column scanning of the arrays of Eq. 11.4-1. These relationships are
given by

fg = Oy if,n, ...y} (11.4-2a)
f, = Oplf} (11.4-2b)
f; = Opif,} (11.4-2¢)

Several estimation approaches to the solution of 11.4-1 or 11.4-2 are described in
the following chapters. Unfortunately, general solutions have not been found;
recourse must be made to specific solutions for less general models.

The most common digital restoration model is that of Figure 11.4-1q, in which
a continuous image field is subjected to a linear blur, the electrical sensor
responds nonlinearly to its input intensity, and the sensor amplifier introduces
additive Gaussian noise independent of the image field. The physical image digi-
tizer that follows may also introduce an effective blurring of the sampled image as
the result of sampling with extended pulses. In this model, display degradation is
ignored.

IMAGING ELECTRICAL f’&'ggg“
BLUR SENSOR K
Filx,y) DIGITIZER| Fg(m, ,m,)
(a) Imaging model
PERFECT
IMAGE ——0o
DIGITIZER| Fy(n,,n,) Plx,y)
N (x,y)
" POINT
e SUPERPOSITION NONLINEARITY o CONVOLUTION
I 1]
Jix,y) Faxy)  Ofe}  Falx,y)  Folxy
DIGITAL
PERFECT
IMAGE RESTORATION [ 2 °
Fu(xy) [DIGITIZER | Fy(m;,m,) |SySTEM Frln,n,)

(b) Restoration model

FIGURE 11.4-1. Imaging and restoration models for a sampled blurred image with additive
noise.
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Figure 11.4-1b shows a restoration model for the imaging system. It is assumed
that the imaging blur can be modeled as a superposition operation with an impulse
response J(x, y) that may be space variant. The sensor is assumed to respond nonlin-
early to the input field Fg(x, y) on a point-by-point basis, and its output is subject to
an additive noise field N(x, y). The effect of sampling with extended sampling
pulses, which are assumed symmetric, can be modeled as a convolution of Fp(x, y)
with each pulse P(x, y) followed by perfect sampling. .

The objective of the restoration is to produce an array of samples F;(n,, n,) that

are estimates of points on the ideal input image field F(x, y) obtained by a perfect
image digitizer sampling at a spatial period A/. To produce a digital restoration
model, it is necessary quantitatively to relate the physical image samples F(rm , m,)
to the ideal image points F,(n, n,) following the techniques outlined in Section 7.2.
This is accomplished by truncating the sampling pulse equivalent impulse response
P(x, y) to some spatial limits +7,, and then extracting points from the continuous
observed field F(x, y) at a grid spacing AP . The discrete representation must then
be carried one step further by relating points on the observed image field F(x, y) to
points on the image field Fp(x, y) and the noise field N(x, y). The final step in the
development of the discrete restoration model involves discretization of the superpo-
sition operation with J(x, y). There are two potential sources of error in this model-
ing process: truncation of the impulse responses J(x, y) and P(x, y), and quadrature
integration errors. Both sources of error can be made negligibly small by choosing
the truncation limits 7 and Tp large, and by choosing the quadrature spacings
Al and AP small. This, of course, increases the sizes of the arrays, and eventually,
the amount of storage and processing required. Actually, as is subsequently shown,
the numerical stability of the restoration estimate may be impaired by improving the
accuracy of the discretization process!

The relative dimensions of the various arrays of the restoration model are impor-
tant. Figure 11.4-2 shows the nested nature of the arrays. The image array observed,
F(ky, ky) , is smaller than the ideal image array, F,(n,, n,) , by the half-width of the
truncated impulse response J(x, y). Similarly, the array of physical sample points
Fg(my, my) is smaller than the array of image points observed, F(k, k,), by the
half-width of the truncated impulse response P(x,y) .

It is convenient to form vector equivalents of the various arrays of the restoration
model in order to utilize the formal structure of vector algebra in the subsequent res-
toration analysis. Again, following the techniques of Section 7.2, the arrays are rein-
dexed so that the first element appears in the upper-left corner of each array. Next,
the vector relationships between the stages of the model are obtained by column
scanning of the arrays to give

fs = B,f, (11.4-32)
f, = f,+n (11.4-3b)
f, = Op{ty} (11.4-3¢)
£, = B,f, (11.4-3d)
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FIGURE 11.4-2. Relationships of sampled image arrays.

where the blur matrix Bp contains samples of P(x, y) and Bp contains samples of
J(x, y). The nonlinear operation of Eq. 1 1.4-3¢ is defined as a point-by-point nonlin-
ear transformation. That is,

fp(i) = Op{fg(i)} (114'4)

Equations 11.4-3a to 11.4-3d can be combined to yield a single equation for the
observed physical image samples in terms of points on the ideal image:

fy = B,Op{Byf,} +Byn (11.4-5)

Several special cases of Eq. 11.4-5 will now be defined. First, if the point nonlin-
earity is absent,

fg = Bf,+n, (11.4-6)

where B = BpBp and ng = Bpn. This is the classical discrete model consisting of a
set of linear equations with measurement uncertainty. Another case that will be
defined for later discussion occurs when the spatial blur of the physical image digi-
tizer is negligible. In this case,

fy = Op{Bf;} +n (11.4-7)

where B = By is defined by Eq. 7.2-15.
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(a) Original

(b) Impulse response
(c) Observation

FIGURE 11.4-3. Image arrays for underdetermined model.

Chapter 12 contains results for several image restoration experiments based on the
restoration model defined by Eq. 11.4-6. An artificial image has been generated for
these computer simulation experiments (9). The original image used for the analysis of
underdetermined restoration techniques, shown in Figure 11.4-3a, consists of a 4 x4
pixel square of intensity 245 placed against an extended background of intensity
10 referenced to an intensity scale of 0 to 255. All images are zoomed for display pur-
poses. The Gaussian-shaped impulse response function is defined as

l l
H(l}, 1) =Kepo _12 + _22 J} (11.4-8)
2b 2by

over a 5x5 point array where K is an amplitude scaling constant and b and by are
blur-spread constants.
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In the computer simulation restoration experiments, the observed blurred image
model has been obtained by multiplying the column-scanned original image of
Figure 11.4-3a by the blur matrix B. Next, additive white Gaussian observation
noise has been simulated by adding output variables from an appropriate random
number generator to the blurred images. For display, all image points restored are
clipped to the intensity range 0 to 255.
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IMAGE RESTORATION TECHNIQUES

A common defect in imaging systems is unwanted nonlinearities in the sensor and
display systems. Post processing correction of sensor signals and pre-processing
correction of display signals can reduce such degradations substantially (1). Such
point restoration processing is usually relatively simple to implement. One of the
most common image restoration tasks is that of spatial image restoration to compen-
sate for image blur and to diminish noise effects. References 2 to 6 contain surveys
of spatial image restoration methods.

12.1. SENSOR AND DISPLAY POINT NONLINEARITY CORRECTION

This section considers methods for compensation of point nonlinearities of sensors
and displays.

12.1.1. Sensor Point Nonlinearity Correction

In imaging systems in which the source degradation can be separated into cascaded
spatial and point effects, it is often possible directly to compensate for the point deg-
radation (7). Consider a physical imaging system that produces an observed image
field F(x, y) according to the separable model

FO(x’y) = OQ{OD{C(xry’ }\’)}} (121-1)

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.
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FIGURE 12.1-1. Point luminance correction for an image sensor.

where C(x,y, 1) is the spectral energy distribution of the input light field, 0,{-}
represents the point amplitude response of the sensor and O,,{ -} denotes the spatial
and wavelength responses. Sensor luminance correction can then be accomplished
by passing the observed image through a correction system with a point restoration
operator Op{ -} ideally chosen such that

OR{OQ{'}} =1 (12.1-2)

For continuous images in optical form, it may be difficult to implement a desired
point restoration operator if the operator is nonlinear. Compensation for images in
analog electrical form can be accomplished with a nonlinear amplifier, while digital
image compensation can be performed by arithmetic operators or by a table look-up
procedure.

Figure 12.1-1 is a block diagram that illustrates the point luminance correction
methodology. The sensor input is a point light distribution function C that is con-
verted to a binary number B for eventual entry into a computer or digital proces-
sor. In some imaging applications, processing will be performed directly on the
binary representation, while in other applications, it will be preferable to convert
to a real fixed-point computer number linearly proportional to the sensor input
luminance. In the former case, the binary correction unit will produce a binary
number B that is designed to be linearly proportional to C, and in the latter case,
the fixed-point correction unit will produce a fixed-point number C that is
designed to be equal to C.

A typical measured response B versus sensor input luminance level C is shown in
Figure 12.1-2a, while Figure 12.1-2b shows the corresponding compensated
response that is desired. The measured response can be obtained by scanning a gray
scale test chart of known luminance values and observing the digitized binary value
B at each step. Repeated measurements should be made to reduce the effects of
noise and measurement errors. For calibration purposes, it is convenient to regard
the binary-coded luminance as a fixed-point binary number. As an example, if the
luminance range is sliced into 4096 levels and coded with 12 bits, the binary repre-
sentation would be

B=bgbybgbsbybybyby. b 1bob 3b y (12.1-3)
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FIGURE 12.1-2. Measured and compensated sensor luminance response.

The whole-number part in this example ranges from 0 to 255, and the fractional part
divides each integer step into 16 subdivisions. In this format, the scanner can pro-
duce output levels over the range

255.9375<B<0.0 (12.1-4)

After the measured gray scale data points of Figure 12.1-2a have been obtained, a
smooth analytic curve

C = g{B} (12.1-5)

is fitted to the data. The desired luminance response in real number and binary number
forms is

C=cC (12.1-6a)

~ C-C._.
B=B min_ (12.1-6b)

max
Cmax - Cmin
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Hence, the required compensation relationships are

¢ = o(B) (12.1-7a)

E:B g{B}_Cmin

max
Cmax - Cmin

(12.1-7b)

The limits of the luminance function are commonly normalized to the range 0.0
to 1.0.

To improve the accuracy of the calibration procedure, it is first wise to per-
form a rough calibration and then repeat the procedure as often as required to
refine the correction curve. It should be observed that because B is a binary num-
ber, the corrected luminance value C will be a quantized real number. Further-
more, the corrected binary coded luminance B will be subject to binary roundoff
of the right-hand side of Eq. 12.1-7b. As a consequence of the nonlinearity of the
fitted curve C = g{B} and the amplitude quantization inherent to the digitizer, it
is possible that some of the corrected binary-coded luminance values may be
unoccupied. In other words, the image histogram of B may possess gaps. To min-
imize this effect, the number of output levels can be limited to less than the num-
ber of input levels. For example, B may be coded to 12 bits and B coded to only
8 bits. Another alternative is to add pseudorandom noise to B to smooth out the
occupancy levels.

Many image scanning devices exhibit a variable spatial nonlinear point lumi-
nance response. Conceptually, the point correction techniques described previously
could be performed at each pixel value using the measured calibrated curve at that
point. Such a process, however, would be mechanically prohibitive. An alternative
approach, called gain correction, that is often successful is to model the variable
spatial response by some smooth normalized two-dimensional curve G(j, k) over the
sensor surface. Then, the corrected spatial response can be obtained by the operation

F(j.k) = g((i 2 (12.1-8)

where F(j,k) and F(j,k) represent the raw and corrected sensor responses,
respectively.

Figure 12.1-3 provides an example of adaptive gain correction of a charge cou-
pled device (CCD) camera. Figure 12.1-3a is an image of a spatially flat light box
surface obtained with the CCD camera. A line profile plot of a diagonal line through
the original image is presented in Figure 12.1-3b. Figure 12.3-3¢ is the gain-cor-
rected original, in which G(j, k) is obtained by Fourier domain low-pass filtering
of the original image. The line profile plot of Figure 12.1-3d shows the “flattened”
result.
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FIGURE 12.1-3. Gain correction of a CCD camera image.

12.1.2. Display Point Nonlinearity Correction

Correction of an image display for point luminance nonlinearities is identical in
principle to the correction of point luminance nonlinearities of an image sensor. The
procedure illustrated in Figure 12.1-4 involves distortion of the binary coded image
luminance variable B to form a corrected binary coded luminance function B so that
the displayed luminance C will be linearly proportional to B. In this formulation,
the display may include a photographic record of a displayed light field. The desired
overall response is

Cmax - Cmin p

C=8 + Conin (12.1-9)

Normally, the maximum and minimum limits of the displayed luminance func-
tion C are not absolute quantities, but rather are transmissivities or reflectivities nor-
malized over a unit range. The measured response of the display and image
reconstruction system is modeled by the nonlinear function

C = fiB} (12.1-10)
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FIGURE 12.1-4. Point luminance correction of an image display.

Therefore, the desired linear response can be obtained by setting

B= g{3w+&mm} (12.1-11)

max

where g{ -} is the inverse function of f{-} .

The experimental procedure for determining the correction function g{-} will
be described for the common example of producing a photographic print from an
image display. The first step involves the generation of a digital gray scale step
chart over the full range of the binary number B. Usually, about 16 equally spaced
levels of B are sufficient. Next, the reflective luminance must be measured over
each step of the developed print to produce a plot such as in Figure 12.1-5. The
data points are then fitted by the smooth analytic curve B = g{C}, which forms
the desired transformation of Eq. 12.1-10. It is important that enough bits be allo-
cated to B so that the discrete mapping g{-} can be approximated to sufficient
accuracy. Also, the number of bits allocated to B must be sufficient to prevent
gray scale contouring as the result of the nonlinear spacing of display levels. A 10-
bit representation of B and an 8-bit representation of B should be adequate in
most applications.

C
me‘
S~ MEASURED
DATA POINTS
CHIN
1
0 Byax B

FIGURE 12.1-5. Measured image display response.
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Image display devices such as cathode ray tube displays often exhibit spatial
luminance variation. Typically, a displayed image is brighter at the center of the dis-
play screen than at its periphery. Correction techniques, as described by Eq. 12.1-8,
can be utilized for compensation of spatial luminance variations.

12.2. CONTINUOUS IMAGE SPATIAL FILTERING RESTORATION

For the class of imaging systems in which the spatial degradation can be modeled
by a linear-shift-invariant impulse response and the noise is additive, restoration of
continuous images can be performed by linear filtering techniques. Figure 12.2-1
contains a block diagram for the analysis of such techniques. An ideal image
F,(x,y) passes through a linear spatial degradation system with an impulse
response H(x,y) and is combined with additive noise N(x,y). The noise is
assumed to be uncorrelated with the ideal image. The image field observed can be
represented by the convolution operation as

Fox.y) = [7[7 Fi(a.B)Hp(x—0oy—PB)dodB+N(xy) (12.2-1a)

or

Fo(x,y) = Fi(x,y) ®@Hp(x, y) + N(x,y) (12.2-1b)

The restoration system consists of a linear-shift-invariant filter defined by the
impulse response Hy(x, y) . After restoration with this filter, the reconstructed image
becomes

Fi(x,y) = 7] Folo. B)Hp(x~ 0.y~ B) do dB (12.2-2a)

or

i’,(x, y) = Fo(x,y) ®Hg(x,y) (12.2-2b)

FIGURE 12.2-1. Continuous image restoration model.
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Substitution of Eq. 12.2-1b into Eq. 12.2-2b yields

Fi(x,y) = [Fy(x,y) ®Hp(x,y) + N(x,y)] @Hg(x, ) (12.2-3)

It is analytically convenient to consider the reconstructed image in the Fourier trans-
form domain. By the Fourier transform convolution theorem,

Af[(mx, o)) = [Fo, o)A (0, o)+ No,, o)]H(o,, o) (12.2-4)

where (o, wy) , o, wy) , Mo, my), Hp(o,, wy) , Hp(o, wy) are the two-
dimensional Fourier transforms of F,(x,y), Fi(x,y), N(x,y), Hp(x,y) , Hp(x,y) ,
respectively.

The following sections describe various types of continuous image restoration
filters.

12.2.1. Inverse Filter

The earliest attempts at image restoration were based on the concept of inverse fil-
tering, in which the transfer function of the degrading system is inverted to yield a
restored image (8—12). If the restoration inverse filter transfer function is chosen so
that

1

Hyp(o,, = — 12.2-5
RO ©,) Hp(o,, ©) ( )
then the spectrum of the reconstructed image becomes
; No,, o)
?I((Dx, (Dy) = 71((1))6, (Dy) + m (122-6)
Upon inverse Fourier transformation, the restored image field
- 1 e (e NO,O) .
Fix,y) = Fi(x,y) + — ————— exp {{(Ox+® dw, do
109 = Fion+ - [ (o, o) p{i( )} }
(12.2-7)

is obtained. In the absence of source noise, a perfect reconstruction results, but if
source noise is present, there will be an additive reconstruction error whose value
can become quite large at spatial frequencies for which (., ® ) is small. Typi-
cally, #Hp(w, o,) and (o, wy) are small at high spatial frequencies, hence
image quality becomes severely impaired in high-detail regions of the reconstructed
image. Figure 12.2-2 shows typical frequency spectra involved in inverse filtering.
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FIGURE 12.2-2. Typical spectra of an inverse filtering image restoration system.

The presence of noise may severely affect the uniqueness of a restoration esti-
mate. That is, small changes in N(x,y) may radically change the value of the esti-
mate F(x,y) . For example, consider the dither function Z(x, y) added to an ideal
image to produce a perturbed image

Fy(x,y) = Fi(x,y) +Z(x, y) (12.2-8)

There may be many dither functions for which

f;f; Z(a, BYHp(x— o, y=B) do dB| <[N(x, y)| (12.2-9)

For such functions, the perturbed image field F,(x,y) may satisfy the convolution
integral of Eq. 12.2-1 to within the accuracy of the observed image field. Specifi-
cally, it can be shown that if the dither function is a high-frequency sinusoid of arbi-
trary amplitude, then in the limit

lim {j“‘ j: sin{n(o+P)1Hp(x— 0,y - Pp) do dﬁ} =0 (12.2-10)

n— oo J=
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For image restoration, this fact is particularly disturbing, for two reasons. High-fre-
quency signal components may be present in an ideal image, yet their presence may
be masked by observation noise. Conversely, a small amount of observation noise
may lead to a reconstruction of F(x,y) that contains very large amplitude high-fre-
quency components. If relatively small perturbations N(x,y) in the observation
result in large dither functions for a particular degradation impulse response, the
convolution integral of Eq. 12.2-1 is said to be unstable or ill conditioned. This
potential instability is dependent on the structure of the degradation impulse
response function.

There have been several ad hoc proposals to alleviate noise problems inherent to
inverse filtering. One approach (10) is to choose a restoration filter with a transfer
function

Hy(o,, (ny)

Hp(o,, 0,) = (12.2-11)

Hpy(o,, o))

where #(o,, ®,) has a value of unity at spatial frequencies for which the expected
magnitude of the ideal image spectrum is greater than the expected magnitude of the
noise spectrum, and zero elsewhere. The reconstructed image spectrum is then

No,, 0) Hy (o0, o)
Hpy(o,, my)

(o, 0,) = Fo,o)H(o, o)+ (12.2-12)

The result is a compromise between noise suppression and loss of high-frequency
image detail.

Another fundamental difficulty with inverse filtering is that the transfer function
of the degradation may have zeros in its passband. At such points in the frequency
spectrum, the inverse filter is not physically realizable, and therefore the filter must
be approximated by a large value response at such points.

12.2.2. Wiener Filter

It should not be surprising that inverse filtering performs poorly in the presence of
noise because the filter design ignores the noise process. Improved restoration qual-
ity is possible with Wiener filtering techniques, which incorporate a priori statistical
knowledge of the noise field (13-17).

In the general derivation of the Wiener filter, it is assumed that the ideal image
F,(x,y) and the observed image F(x,y) of Figure 12.2-1 are samples of two-
dimensional, continuous stochastic fields with zero-value spatial means. The
impulse response of the restoration filter is chosen to minimize the mean-square
restoration error

£ = E{[Fl(x, y) —[v,(x,y)]z} (12.2-13)



CONTINUOUS IMAGE SPATIAL FILTERING RESTORATION 339

The mean-square error is minimized when the following orthogonality condition
is met (13):

E{LF,(x,y) = Fi(x, NIF o(x’, ¥)} = 0 (12.2-14)

for all image coordinate pairs (x, y) and (x’,y”). Upon substitution of Eq. 12.2-2a
for the restored image and some linear algebraic manipulation, one obtains

E{F)(x »)Foe )} = [T [7 E{Fo(0n B)Fo(x', ) HHg(x ~ 0y~ B) do df

(12.2-15)
Under the assumption that the ideal image and observed image are jointly stationary,

the expectation terms can be expressed as covariance functions, as in Eq. 1.4-8. This
yields

KFIFU(x—x',y—y’) = J'_ZJl:OKFOFO((x—x',B—y')HR(x—OL,y— B)dodB (12.2-16)

Then, taking the two-dimensional Fourier transform of both sides of Eq. 12.2-16 and
solving for #,(w,, ®,), the following general expression for the Wiener filter trans-
fer function is obtained:

WF, Fo(oox, o))

He(w, 0) = 12.2-17
R TR W ( )
In the special case of the additive noise model of Figure 12.2-1:
WF,FU((DX’ o) = (o, m},)WFI(mX, o,) (12.2-18a)

Wy p (0, 0) = |Hp(0, 0 Wy (0, 0) + Wy(, 0,)  (12.2-18b)

This leads to the additive noise Wiener filter

Hpy (0, ©) Wy (0, ©,)
D W (O O, (12.2-19a)

Hp(o,, @) = 5
|Hp (0, (oy)\ WFI((DX, o))+ Wy(o,, 0)

or

Hp (0, ©,)

Ho(0, ) = (12.2-19b)

|Hp (o, wy)‘z + Wy(o, 0,)/ Wy (0, o)
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In the latter formulation, the transfer function of the restoration filter can be
expressed in terms of the signal-to-noise power ratio

Wi (0, 0)

SNR(0,, 0,) = (12.2-20)

Wy, o))

at each spatial frequency. Figure 12.2-3 shows cross-sectional sketches of a typical
ideal image spectrum, noise spectrum, blur transfer function and the resulting
Wiener filter transfer function. As noted from the figure, this version of the Wiener
filter acts as a bandpass filter. It performs as an inverse filter at low spatial frequen-
cies, and as a smooth rolloff low-pass filter at high spatial frequencies.

Equation 12.2-19 is valid when the ideal image and observed image stochastic
processes are zero mean. In this case, the reconstructed image Fourier transform is

(0, 0)) = Hy(0,0) (0, 0) (12.2-21)
|WF1(W" c’)|
wx
|WN(WK g o)
wx
i
WX

|#R(w"°)| —_’//\

FIGURE 12.2-3. Typical spectra of a Wiener filtering image restoration system.

Wy
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If the ideal image and observed image means are nonzero, the proper form of the
reconstructed image Fourier transform is

(o, my) = Hp(w, (oy)[fo((ox, my)—MO(mx, (oy)] + M, (oy) (12.2-22a)
where
Mp(®,, (oy) = Hp(o,, my)M,((ox, (oy)+ My(o,, (oy) (12.2-22b)

and M(o,, o)) and M(o,, o) are the two-dimensional Fourier transforms of
the means of the ideal image and noise, respectively. It should be noted that Eq.
12.2-22 accommodates spatially varying mean models. In practice, it is common
to estimate the mean of the observed image by its spatial average M,(x,y) and
apply the Wiener filter of Eq. 12.2-19 to the observed image difference
Fo(x,y)—M(x,y), and then add back the ideal image mean M,(x,y) to the
Wiener filter result.

It is useful to investigate special cases of Eq. 12.2-19. If the ideal image is
assumed to be uncorrelated with unit energy, WF[((D)C, (oy) = 1, and the Wiener fil-
ter becomes

Hp(0p ©) (12.2-23)

Hp(0,, ©) = >
[Hp(@, ©)|" + Wy(o,, )

This version of the Wiener filter provides less noise smoothing than does the general
case of Eq. 12.2-19. If there is no blurring of the ideal image, #,(,, wy) =1,and
the Wiener filter becomes a noise smoothing filter with a transfer function

1
S — 12.2-24
He(©p ©,) 1+ Wy(o, o) ( )

In many imaging systems, the impulse response of the blur may not be fixed;
rather, it changes shape in a random manner. A practical example is the blur
caused by imaging through a turbulent atmosphere. Obviously, a Wiener filter
applied to this problem would perform better if it could dynamically adapt to the
changing blur impulse response. If this is not possible, a design improvement in
the Wiener filter can be obtained by considering the impulse response to be a
sample of a two-dimensional stochastic process with a known mean shape and
with a random perturbation about the mean modeled by a known power spectral
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density. Transfer functions for this type of restoration filter have been developed
by Slepian (18).

12.2.3. Parametric Estimation Filters

Several variations of the Wiener filter have been developed for image restoration.
Some techniques are ad hoc, while others have a quantitative basis.
Cole (19) has proposed a restoration filter with a transfer function

']/VF (mx, my) 172
Hp(o,, ) = 5 ! (12.2-25)
|Hp (o, wy)‘ WFI((DX, o)) + Wy(o,, )
The power spectrum of the filter output is
2
Wﬁl(“)x’ o) = ‘}[R(wx, u)y)‘ ‘VVFU((DX, o,) (12.2-26)

where "I/VFO((DX, ®,) represents the power spectrum of the observation, which is
related to the power spectrum of the ideal image by

Wy (0, 0,) = |Hp(o, w},)‘ZWFI(wX, ) + Wy(o,, ) (12.2-27)

Thus, it is easily seen that the power spectrum of the reconstructed image is identical
to the power spectrum of the ideal image field. That is,

W, (0,0, = W (0,0) (12.2-28)

For this reason, the restoration filter defined by Eq. 12.2-25 is called the image
power-spectrum filter. In contrast, the power spectrum for the reconstructed
image as obtained by the Wiener filter of Eq. 12.2-19 is

(@, 0 ) [Wy (0, 0,1

‘W[Fl((nx, o) = (12.2-29)

2
[Hp (0, 0)]" Wp (0, ©)) + Wy(0,, ©,)
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In this case, the power spectra of the reconstructed and ideal images become identi-
cal only for a noise-free observation. Although equivalence of the power spectra
of the ideal and reconstructed images appears to be an attractive feature of the
image power-spectrum filter, it should be realized that it is more important that the
Fourier spectra (Fourier transforms) of the ideal and reconstructed images be iden-
tical because their Fourier transform pairs are unique, but power-spectra transform
pairs are not necessarily unique. Furthermore, the Wiener filter provides a mini-
mum mean-square error estimate, while the image power-spectrum filter may result
in a large residual mean-square error.

Cole (19) has also introduced a geometrical mean filter, defined by the transfer
function

_ Hp (0, 0) Wy (0, ©) 1=
Hy(®, 0) = [Hp(o, 0)]" A z

‘}[D(mx, w},)‘zwﬂ(mx, (ny) + Wy(o,, (ny)

(12.2-30)

where 0<S<1 is a design parameter. If § = 1/2 and #, = %}, the geometrical
mean filter reduces to the image power-spectrum filter as given in Eq. 12.2-25.

Hunt (20) has developed another parametric restoration filter, called the con-
strained least-squares filter, whose transfer function is of the form

Hp (o, o)
He(®, 0) = S 5 (12.2-31)
[Hp(0, 0)|" + 7|0, o))

where vy is a de51gn constant and C(w,, ®,) is a design spectral variable. If y = 1
and |C(®,, ® )\ is set equal to the remprocal of the spectral signal-to-noise power
ratio of Eq. 12.2-20, the constrained least-squares filter becomes equivalent to the
Wiener filter of Eq. 12.2-19b. The spectral variable can also be used to minimize
higher-order derivatives of the estimate.

12.2.4. Application to Discrete Images

The inverse filtering, Wiener filtering and parametric estimation filtering tech-
niques developed for continuous image fields are often applied to the restora-
tion of discrete images. The common procedure has been to replace each of the
continuous spectral functions involved in the filtering operation by its discrete two-
dimensional Fourier transform counterpart. However, care must be taken in this



344 IMAGE RESTORATION TECHNIQUES

conversion process so that the discrete filtering operation is an accurate representa-
tion of the continuous convolution process and that the discrete form of the restora-
tion filter impulse response accurately models the appropriate continuous filter
impulse response.

Figures 12.2-4 to 12.2-7 present examples of continuous image spatial filtering
techniques by discrete Fourier transform filtering. The original image of Figure
12.2-4a has been blurred with a Gaussian-shaped impulse response with b = 2.0 to
obtain the blurred image of Figure 12.2-4b. White Gaussian noise has been added to
the blurred image to give the noisy blurred image of Figure 12.2-4¢, which has a sig-
nal-to-noise ratio of 10.0.

Figure 12.2-5 shows the results of inverse filter image restoration of the
blurred and noisy-blurred images. In Figure 12.2-5a, the inverse filter transfer
function follows Eq. 12.2-5 (i.e., no high-frequency cutoff). The restored image for the

(a) Original

(b) Blurred, b=2.0 (c) Blurred with noise, SNR = 10.0

FIGURE 12.2-4. Blurred test images.
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noise-free observation is corrupted completely by the effects of computational
error. The computation was performed using 32-bit floating-point arithmetic.In
Figure 12.2-5¢, the inverse filter restoration is performed with a circular cutoff
inverse filter as defined by Eq. 12.2-11 with C = 200 for the 512x512 pixel
noise-free observation. Some faint artifacts are visible in the restoration. In Figure
12.2-5e, the cutoff frequency is reduced to C = 150. The restored image appears
relatively sharp and free of artifacts. Figure 12.2-5b, d and f show the result of
inverse filtering on the noisy-blurred observed image with varying cutoff frequen-
cies. These restorations illustrate the trade-off between the level of artifacts and
the degree of deblurring.

Figure 12.2-6 shows the results of Wiener filter image restoration. In all
cases, the noise power spectral density is white and the signal power spectral
density is circularly symmetric Markovian with a correlation factor p. For the
noise-free observation, the Wiener filter provides restorations that are free of
artifacts but only slightly sharper than the blurred observation. For the noisy
observation, the restoration artifacts are less noticeable than for an inverse
filter.

Figure 12.2-7 presents restorations using the power spectrum filter. For a
noise-free observation, the power spectrum filter gives a restoration of similar
quality to an inverse filter with a low cutoff frequency. For a noisy observation,
the power spectrum filter restorations appear to be grainier than for the Wiener
filter.

The continuous image field restoration techniques derived in this section are
advantageous in that they are relatively simple to understand and to implement using
Fourier domain processing. However, these techniques face several important limi-
tations. First, there is no provision for aliasing error effects caused by physical
undersampling of the observed image. Second, the formulation inherently assumes
that the quadrature spacing of the convolution integral is the same as the physical
sampling. Third, the methods only permit restoration for linear, space-invariant deg-
radation. Fourth, and perhaps most important, it is difficult to analyze the effects of
numerical errors in the restoration process and to develop methods of combatting
such errors. For these reasons, it is necessary to turn to the discrete model of a sam-
pled blurred image developed in Section 7.2, and then reformulate the restoration
problem on a firm numeric basic. This is the subject of the remaining sections of the
chapter.

12.3. PSEUDOINVERSE SPATIAL IMAGE RESTORATION

The matrix pseudoinverse defined in Appendix 1 can be used for spatial image
restoration of digital images when it is possible to model the spatial degradation as
a vector-space operation on a vector of ideal image points yielding a vector of
physical observed samples obtained from the degraded image (21-23).
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(a) Noise-free, no cutoff (b) Noisy, C =100
(c) Noise-free, C =200 (d) Noisy, C=75
(e) Noise-free, C =150 (f) Noisy, C=50

FIGURE 12.2-5. Inverse filter image restoration on the blurred test images.
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(a) Noise-free, p=0.9 (b) Noisy, p=0.9
(c) Noise-free, p=0.5 (d) Noisy, p=0.5
(e) Noise-free, p=0.0 (f) Noisy, p=0.0

FIGURE 12.2-6. Wiener filter image restoration on the blurred test images; SNR = 10.0.
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(a) Noise-free, p=0.5 (b) Noisy, p=0.5

(c) Noisy, p=10.5 (d) Noisy, p=0.0

FIGURE 12.2-7. Power spectrum filter image restoration on the blurred test images;
SNR = 10.0.

12.3.1. Pseudoinverse: Image Blur

The first application of the pseudoinverse to be considered is that of the restoration
of a blurred image described by the vector-space model

g = Bf (12.3-1)

as derived in Eq. 11.4-6, where gis a Px 1 vector (P = Mz) containing the M x M
physical samples of the blurred image, f is a Qx1 vector (Q = Nz) containing
Nx N points of the ideal image and B is the Px Q matrix whose elements are
points on the impulse function. If the physical sample period and the quadrature
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representation period are identical, P will be smaller than Q, and the system of
equations will be underdetermined. By oversampling the blurred image, it is possi-
ble to force P> Q oreven P = Q. In either case, the system of equations is called
overdetermined. An overdetermined set of equations can also be obtained if some
of the elements of the ideal image vector can be specified through a priori knowl-
edge. For example, if the ideal image is known to contain a limited size object
against a black background (zero luminance), the elements of f beyond the limits
may be set to zero. R

In discrete form, the restoration problem reduces to finding a solution f to Eq.
12.3-1 in the sense that

Bf = ¢ (12.3-2)

Because the vector g is determined by physical sampling and the elements of B are
specified independently by system modeling, there is no guarantee that a f even
exists to satisfy Eq. 12.3-2. If there is a solution, the system of equations is said to be
consistent; otherwise, the system of equations is inconsistent.

In Appendix 1, it is shown that inconsistency in the set of equations of Eq. 12.3-1
can be characterized as

g = Bf +e{f} (12.3-3)

where e{f} is a vector of remainder elements whose value depends on f. If the set
of equations is inconsistent, a solution of the form

f=Wg (12.3-4)

is sought for which the linear operator W minimizes the least-squares modeling
error

£, = [e{f}] [e{f}] = [g—Bf] [g—Bf] (12.3-5)

This error is shown, in Appendix 1, to be minimized when the operator W = BY is
set equal to the least-squares inverse of B. The least-squares inverse is not necessar-
ily unique. It is also proved in Appendix 1 that the generalized inverse operator
W = B", which is a special case of the least-squares inverse, is unique, minimizes
the least-squares modeling error, and simultaneously provides a minimum norm
estimate. That is, the sum of the squares of f is a minimum for all possible mini-
mum least-square error estimates. For the restoration of image blur, the generalized
inverse provides a lowest-intensity restored image.
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If Eq. 12.3-1 represents a consistent set of equations, one or more solutions may
exist for Eq. 12.3-2. The solution commonly chosen is the estimate that minimizes
the least-squares estimation error defined in the equivalent forms

£, = (f-f) (- f) (12.3-6a)

£

tr{ (f- %)(f_%)T} (12.3-6b)

In Appendix 1, it is proved that the estimation error is minimum for a generalized
inverse (W = B") estimate. The resultant residual estimation error then becomes

£, = t'[1-[B” BJIf (12.3-7a)

or

£, = tw{ff [1-[B” BI]} (12.3-7b)

The estimate is perfect, of course, if B'B =1.

Thus, it is seen that the generalized inverse is an optimal solution, in the sense
defined previously, for both consistent and inconsistent sets of equations modeling
image blur. From Appendix 1, the generalized inverse has been found to be algebra-
ically equivalent to

B = B'B] B’ (12.3-8a)
if the P x Q matrix B is of rank Q. If B is of rank P, then
B~ =B'B"B] (12.3-8b)

For a consistent set of equations and a rank Q generalized inverse, the estimate

f=B g=B Bf=[[B'B] B'IBf = f (12.3-9)

is obviously perfect. However, in all other cases, a residual estimation error may
occur. Clearly, it would be desirable to deal with an overdetermined blur matrix of
rank Q in order to achieve a perfect estimate. Unfortunately, this situation is rarely
achieved in image restoration. Oversampling the blurred image can produce an
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overdetermined set of equations (P > Q), but the rank of the blur matrix is likely to
be much less than Q because the rows of the blur matrix will become more lin-
early dependent with finer sampling.

A major problem in application of the generalized inverse to image restoration is
dimensionality. The generalized inverse is a Q x P matrix where P is equal to the
number of pixel observations and Q is equal to the number of pixels to be estimated
in an image. It is usually not computationally feasible to use the generalized inverse
operator, defined by Eq. 12.3-8, over large images because of difficulties in reliably
computing the generalized inverse and the large number of vector multiplications
associated with Eq. 12.3-4. Computational savings can be realized if the blur matrix
B is separable such that

B =B.®B, (12.3-10)

where B and By are column and row blur operators. In this case, the generalized
inverse is separable in the sense that

B~ =B, ®B, (12.3-11)

where B and B are generalized inverses of B and B, respectively. Thus, when
the blur matrix is of separable form, it becomes possible to form the estimate of the
image by sequentially applying the generalized inverse of the row blur matrix to
each row of the observed image array and then using the column generalized inverse
operator on each column of the array.

Pseudoinverse restoration of large images can be accomplished in an approxi-
mate fashion by a block mode restoration process, similar to the block mode filter-
ing technique of Section 9.3, in which the blurred image is partitioned into small
blocks that are restored individually. It is wise to overlap the blocks and accept only
the pixel estimates in the center of each restored block because these pixels exhibit
the least uncertainty. Section 12.3.3 describes an efficient computational algorithm
for pseudoinverse restoration for space-invariant blur.

Figure 12.3-1a shows a blurred image based on the model of Figure 11.5-3.
Figure 12.3-1b shows a restored image using generalized inverse image restoration.
In this example, the observation is noise free and the blur impulse response function
is Gaussian shaped, as defined in Eq. 11.5-8, with bg = b = 1.2. Only the center
8 x 8 region of the 12 x 12 blurred picture is displayed, zoomed to an image size of
256 x 256 pixels. The restored image appears to be visually improved compared to
the blurred image, but the restoration is not identical to the original unblurred image
of Figure 11.5-3a. The figure also gives the percentage least-squares error (PLSE) as
defined in Appendix 3, between the blurred image and the original unblurred image,
and between the restored image and the original. The restored image has less error
than the blurred image.
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(a) Blurred, PLSE =4.97% (b) Restored, PLSE =1.41%

FIGURE 12.3-1. Pseudoinverse image restoration for test image blurred with Gaussian
shape impulse response. M = 8, N =12, L = 5; bg = b= 1.2; noise-free observation.

12.3.2. Pseudoinverse: Image Blur Plus Additive Noise

In many imaging systems, an ideal image is subject to both blur and additive noise;
the resulting vector-space model takes the form

g = Bf+n (12.3-12)

where g and n are P x 1 vectors of the observed image field and noise field, respec-
tively, fis a O x 1 vector of ideal image points, and B is a P x Q0 blur matrix. The
vector n is composed of two additive components: samples of an additive external
noise process and elements of the vector difference (g - Bf) arising from modeling
errors in the formulation of B. As a result of the noise contribution, there may be no
vector solutions f that satisfy Eq. 12.3-12. However, as indicated in Appendix 1, the
generalized inverse B~ can be utilized to determine a least-squares error, minimum
norm estimate. In the absence of modeling error, the estimate

f=B g=B Bf+B n (12.3-13)

differs from the ideal image because of the additive noise contribution B n. Also,
for the underdetermined model, B B will not be an identity matrix. If B is an over-
determined rank Q matrix, as defined in Eq. 12.3-8a, then B B =1, and the resulting
estimate is equal to the original image vector f plus a perturbation vector Af = B n.
The perturbation error in the estimate can be measured as the ratio of the vector
norm of the perturbation to the vector norm of the estimate. It can be shown (25, p.
52) that the relative error is subject to the bound

AT g~ . (123-14)
[ el
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The product |[B™ || ||Bl|, which is called the condition number C{B} of B, deter-
mines the relative error in the estimate in terms of the ratio of the vector norm of the
noise to the vector norm of the observation. The condition number can be computed
directly or found in terms of the ratio

CIB = % (12.3-15)
N

of the largest Wy to smallest Wy, singular values of B. The noise perturbation error
for the underdetermined matrix B is also governed by Eqs. 12.3-14 and 12.3-15 if
Wy is defined to be the smallest nonzero singular value of B (25, p. 41). Obviously,
the larger the condition number of the blur matrix, the greater will be the sensitivity
to noise perturbations.

Figure 12.3-2 contains image restoration examples for a Gaussian-shaped blur
function for several values of the blur standard deviation and a noise variance of
10.0 on an amplitude scale of 0.0 to 255.0. As expected, observation noise
degrades the restoration. Also as expected, the restoration for a moderate degree
of blur is worse than the restoration for less blur. However, this trend does not con-
tinue; the restoration for severe blur is actually better in a subjective sense than for
moderate blur. This seemingly anomalous behavior, which results from spatial
truncation of the point-spread function, can be explained in terms of the condition
number of the blur matrix. Figure 12.3-3 is a plot of the condition number of the
blur matrix of the previous examples as a function of the blur coefficient (21). For
small amounts of blur, the condition number is low. A maximum is attained for
moderate blur, followed by a decrease in the curve for increasing values of the blur
coefficient. The curve tends to stabilize as the blur coefficient approaches infinity.
This curve provides an explanation for the previous experimental results. In the
restoration operation, the blur impulse response is spatially truncated over a
square region of 5x35 quadrature points. As the blur coefficient increases, for
fixed M and N, the blur impulse response becomes increasingly wider, and its tails
become truncated to a greater extent. In the limit, the nonzero elements in the blur
matrix become constant values, and the condition number assumes a constant
level. For small values of the blur coefficient, the truncation effect is negligible,
and the condition number curve follows an ascending path toward infinity with the
asymptotic value obtained for a smoothly represented blur impulse response. As
the blur factor increases, the number of nonzero elements in the blur matrix
increases, and the condition number stabilizes to a constant value. In effect, a
trade-off exists between numerical errors caused by ill-conditioning and
modeling accuracy. Although this conclusion is formulated on the basis of a par-
ticular degradation model, the inference seems to be more general because the
inverse of the integral operator that describes the blur is unbounded. Therefore,
the closer the discrete model follows the continuous model, the greater the degree
of ill-conditioning. A move in the opposite direction reduces singularity but
imposes modeling errors. This inevitable dilemma can only be broken with the
intervention of correct a priori knowledge about the original image.
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Blurred Restored
bR = bC = 06
(a) PLSE =1.30% (b) PLSE =0.21%
bR = bC = 1 2
(c) PLSE =4.91% (d) PLSE =2695.81%
bFl = bc = 500
(e) PLSE =7.99% (f) PLSE =7.29%

FIGURE 12.3-2. Pseudoinverse image restoration for test image blurred with Gaussian
shape impulse response. M = 8, N = 12, L = 5; noisy observation, Var = 10.0.
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FIGURE 12.3-3. Condition number curve.

12.3.3. Pseudoinverse Computational Algorithms

Efficient computational algorithms have been developed by Pratt and Davarian (22) for
pseudoinverse image restoration for space-invariant blur. To simplify the explanation of
these algorithms, consideration will initially be limited to a one-dimensional example.

Let the N x 1 vector fand the M x 1 vector g, be formed by selecting the center
portions of f and g, respectively. The truncated vectors are obtained by dropping
L - 1 elements at each end of the appropriate vector. Figure 12.3-4q illustrates the
relationships of all vectors for N = 9 original vector points, M = 7 observations
and an impulse response of length L = 3.

The elements f, and g, are entries in the adjoint model

qg = Cfp+n, (12.3-16a)

FIGURE 12.3-4. One-dimensional sampled continuous convolution and discrete convolution.
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where the extended vectors q, f; and n, are defined in correspondence with

= ¢ + (12.3-16b)

where g isa Mx 1 vector, f; and n, are Kx 1 vectors and C is a JxJ matrix. As
noted in Figure 12.3-4b, the vector q is identical to the image observation g over its
R = M-2(L-1) center elements. The outer elements of q can be approximated by

q=§ = Eg (12.3-17)

where E, called an extraction weighting matrix, is defined as

(12.3-18)

=1

1l
S o
S - o
T oo

where a and b are L x L submatrices, which perform a windowing function similar
to that described in Section 9.4.2 (22).
Combining Eqs. 12.3-17 and 12.3-18, an estimate of f7 can be obtained from

fp=C'q, (12.3-19)

Equation 12.3-19 can be solved efficiently using Fourier domain convolution
techniques, as described in Section 9.3. Computation of the pseudoinverse by
Fourier processing requires on the order of Jz(l +4 log, J) operations in two
dimensions; spatial domain computation requires about M "N~ operations. As an
example, for M = 256 and L = 17, the computational savings are nearly 1750:1 (22).
Figure 12.3-5 is a computer simulation example of the operation of the pseudoin-
verse image restoration algorithm for one-dimensional blur of an image. In the first step
of the simulation, the center K pixels of the original image are extracted to form the set
of truncated image vectors f, shown in Figure 12.3-5b. Next, the truncated image vec-
tors are subjected to a simulated blur with a Gaussian-shaped impulse response with
bg = 1.5 to produce the observation of Figure 12.3-5¢. Figure 12.3-5d shows the result
of the extraction operation on the observation. Restoration results without and with the
extraction weighting operator E are presented in Figure 12.3-5¢ and f, respectively.
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(a) Original image vectors, f (b) Truncated image vectors, f

(c) Observation vectors, g (d) Windowed observation vectors, q

(e) Restoration without windowing, ?T (f) Restoration with windowing, /f\T
FIGURE 12.3-5. Pseudoinverse image restoration for small degree of horizontal blur,

bg =15.

These results graphically illustrate the importance of the extraction operation. Without
weighting, errors at the observation boundary completely destroy the estimate in



358 IMAGE RESTORATION TECHNIQUES

the boundary region, but with weighting the restoration is subjectively satisfying,
and the restoration error is significantly reduced. Figure 12.3-6 shows simulation
results for the experiment of Figure 12.3-5 when the degree of blur is increased by
setting bp = 2.0. The higher degree of blur greatly increases the ill-conditioning of
the blur matrix, and the residual error in formation of the modified observation after
weighting leads to the disappointing estimate of Figure 12.3-6b. Figure 12.3-6¢ and
d illustrate the restoration improvement obtained with the pseudoinverse algorithm
for horizontal image motion blur. In this example, the blur impulse response is con-
stant, and the corresponding blur matrix is better conditioned than the blur matrix
for Gaussian image blur.

Reeves (24) has developed a similar method of FFT processing without boundary
artifacts.

(a) Observation, g (b) Restoration, fT
Gaussian blur, bg=2.0

(c) Observation, g (d) Restoration, ?T
Uniform motion blur, L =15.0

FIGURE 12.3-6. Pseudoinverse image restoration for moderate and high degrees of hori-
zontal blur.
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12.4. SVD PSEUDOINVERSE SPATIAL IMAGE RESTORATION

In Appendix 1, it is shown that any matrix can be decomposed into a series of eigen-
matrices by the technique of singular value decomposition. For image restoration,
this concept has been extended (25-30) to the eigen decomposition of blur matrices
in the imaging model

g = Bf+n (12.4-1)
From Eq. A1.2-3, the blur matrix B may be expressed as

B = UA*V! (12.4-2)
where the P x P matrix U and the Q x 0 matrix V are unitary matrices composed of
the eigenvectors of BB” and BB, respectively and A isa P x Q matrix whose diag-
onal terms A(i) contain the eigenvalues of BB’ and B'B. As a consequence of the
orthogonality of U and V, it is possible to express the blur matrix in the series form

R
B =Y (n)]"uy] (12.4-3)
i=1

where u; and v; are the ith columns of U and V, respectively, and R is the rank of
the matrix B.

From Eq. 12.4-2, because U and V are unitary matrices, the generalized inverse
of Bis

R
B = VAU = ¥ v P (12.4-4)

Figure 12.4-1 shows an example of the SVD decomposition of a blur matrix. The
generalized inverse estimate can then be expressed as

=B g=VA""U'g (12.4-52)

- >

or, equivalently,

R R
f=3 i Pvulg = 3 T *[u] gy, (12.4-5b)
i=1

i=1
recognizing the fact that the inner product ul.Tg is a scalar. Equation 12.4-5 provides
the basis for sequential estimation; the kth estimate of f in a sequence of estimates is

equal to

fo = 1+ A0 *[ulglv, (12.4-6)
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(a) Blur matrix, B

(b) uvl, A(1) = 0.871 (c) uvy, 1(2) =0.573
(d) ugvd, 1(3) =0.285 (€) ugv], A(4) =0.108
() usv, A(5) = 0.034 (9) ugvg', +(6) = 0.014
(h) upvd, A(7) = 0.011 (i) ugvg', #(8) = 0.010

FIGURE 12.4-1. SVD decomposition of a blur matrix for bg=2.0, M =8, N=16,L =9.
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One of the principal advantages of the sequential formulation is that problems of
ill-conditioning generally occur only for higher-order singular values. Thus, it is
possible interactively to terminate the expansion before numerical problems
occur.

Figure 12.4-2 shows an example of sequential SVD restoration for the under-
determined model example of Figure 11.5-3 with a poorly conditioned Gauss-
ian blur matrix. A one-step pseudoinverse would have resulted in the final
image estimate that is totally overwhelmed by numerical errors. The sixth step,
which is the best subjective restoration, offers a considerable improvement over
the blurred original, but the lowest least-squares error occurs for three singular
values.

The major limitation of the SVD image restoration method formulation in Eqgs.
12.4-5 and 12.4-6 is computational. The eigenvectors u; and v; must first be deter-
mined for the matrix BB and B’B. Then the vector computations of Eq 12.4-5 or
12.4-6 must be performed. Even if B is direct-product separable, permitting separa-
ble row and column SVD pseudoinversion, the computational task is staggering in
the general case.

The pseudoinverse computational algorithm described in the preceding section
can be adapted for SVD image restoration in the special case of space-invariant blur
(23). From the adjoint model of Eq. 12.3-16 given by

q = Cf +n, (12.4-7)

the circulant matrix C can be expanded in SVD form as

c = xA" v+’ (12.4-8)

where X and Y are unitary matrices defined by

xicexs" = A (12.4-9a)

yic'clys’ = A (12.4-9b)

Because C is circulant, CCT is also circulant. Therefore, X and Y must be equiva-
lent to the Fourier transform matrix A or A" because the Fourier matrix produces a
diagonalization of a circulant matrix. For purposes of standardization, let
X=Y=A"' Asa consequence, the eigenvectors x; = y;, which are rows of X
and Y, are actually the complex exponential basis functions
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(a) 8 singular values PLSE = 2695.81%  (b) 7 singular values PLSE = 148.93%

(c) 6 singular values PLSE = 6.88% (d) 5 singular values PLSE = 3.31%
(e) 4 singular values PLSE = 3.06% (f) 3 singular values PLSE = 3.05%
(9) 2 singular values PLSE = 9.52% (h) 1 singular value PLSE = 9.52%

FIGURE 12.4-2. SVD restoration for test image blurred with a Gaussian-shaped impulse
response. bg =bc =12, M =8, N=12, L =5; noisy observation, Var = 10.0.
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X () = exp{%’”(k—nu—l)} (12.4-10)

of a Fourier transform for 1<j, k<J . Furthermore,
T
A=CC* (12.4-11)

where C is the Fourier domain circular area convolution matrix. Then, in correspon-
dence with Eq. 12.4-5

= AA%Aq, (12.4-12)

where q is the modified blurred image observation of Eqgs. 12.3-19 and 12.3-20.
Equation 12.4-12 should be recognized as being a Fourier domain pseudoinverse
estimate. Sequential SVD restoration, analogous to the procedure of Eq. 12.4-6, can
be obtained by replacing the SVD pseudoinverse matrix A% of Eq. 12.4-12 by the
operator

(A2 0

A 2172

A = . B .| (12.4-13)
T [AL(T)] 172

Complete truncation of the high-frequency terms to avoid ill-conditioning effects
may not be necessary in all situations. As an alternative to truncation, the diagonal
zero elements can be replaced by [A( T)]fl/2 or perhaps by some sequence that
declines in value as a function of frequency. This concept is actually analogous to
the truncated inverse filtering technique defined by Eq. 12.2-11 for continuous
image fields.

Figure 12.4-3 shows an example of SVD pseudoinverse image restoration for
one-dimensional Gaussian image blur with by = 3.0. It should be noted that the res-
toration attempt with the standard pseudoinverse shown in Figure 12.3-6b was sub-
Ject to severe ill-conditioning errors at a blur spread of bg = 2.0.
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(a) Blurred observation (b) Restoration, T=58

(c) Restoration, T=60
FIGURE 12.4-3. Sequential SVD pseudoinverse image restoration for horizontal Gaussian
blur, bg =3.0, L =23, J =256.

12.5. STATISTICAL ESTIMATION SPATIAL IMAGE RESTORATION

A fundamental limitation of pseudoinverse restoration techniques is that observation
noise may lead to severe numerical instability and render the image estimate unusable.
This problem can be alleviated in some instances by statistical restoration techniques
that incorporate some a priori statistical knowledge of the observation noise (21).

12.5.1. Regression Spatial Image Restoration

Consider the vector-space model

g = Bf+n (12.5-1)
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for a blurred image plus additive noise in which B is a P x Q blur matrix, and the
noise is assumed to be zero mean with known covariance matrix K,. The regression
method seeks to form an estimate

f = Wg (12.5-2)

where W is a restoration matrix that minimizes the weighted error measure

©(f} = [g-BfI'K, '[g Bf] (12.5-3)

Minimization of the restoration error can be accomplished by the classical method
of setting the partial derivative of ©{f} with respect to f to zero. In the underdeter-
mined case, for which P < Q, it can be shown (31) that the minimum norm estimate
regression operator is

W = [K 'B] K (12.5-4)
where K is a matrix obtained from the spectral factorization

K. = KK’ (12.5-5)

n

of the noise covariance matrix K, . For white noise, K = onzl, and the regression
operator assumes the form of a rank P generalized inverse for an underdetermined
system as given by Eq. 12.3-8b.

12.5.2. Wiener Estimation Spatial Image Restoration

With the regression technique of spatial image restoration, the noise field is modeled
as a sample of a two-dimensional random process with a known mean and covari-
ance function. Wiener estimation techniques assume, in addition, that the ideal
image is also a sample of a two-dimensional random process with known first and
second moments (31,32).

Wiener Estimation: General Case. Consider the general discrete model of Figure
12.5-1 in which a Q x 1 image vector f is subject to some unspecified type of point
and spatial degradation resulting in the P x 1 vector of observations g. An estimate
of f is formed by the linear operation

f=Wg+b (12.5-6)
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FIGURE 12.5-1. Wiener estimation for spatial image restoration.

where W is a Q x P restoration matrix and b is a Q x 1 bias vector. The objective of
Wiener estimation is to choose W and b to minimize the mean-square restoration
error, which may be defined as

= E{ (£ [f-f] } (12.5-7a)

or

= tr{E{ [f—%][f—%]TH (12.5-7b)

Equation 12.5-7a expresses the error in inner-product form as the sum of the squares
of the elements of the error vector [f-f], while Eq. 12.5-7b forms the covariance
matrix of the error, and then sums together its variance terms (diagonal elements) by
the trace operation. Minimization of Eq. 12.5-7 in either of its forms can
be accomplished by differentiation of £ with respect to f. An alternative approach,
which is of quite general utility, is to employ the orthogonality principle (33, p. 219)
to determine the values of W and b that minimize the mean-square error. In the con-
text of image restoration, the orthogonality principle specifies two necessary and
sufficient conditions for the minimization of the mean-square restoration error:

1. The expected value of the image estimate must equal the expected value of
the image

E{f} = E{f} (12.5-8)
2. The restoration error must be orthogonal to the observation about its mean
E{[f-fl[g—E{g}1"} = 0 (12.5-9)
From condition 1, one obtains
b = E{f} - WE{g} (12.5-10)

and from condition 2

E{[W+b-f][g—E{g}]'} =0 (12.5-11)
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Upon substitution for the bias vector b from Eq. 12.5-10 and simplification, Eq.
12.5-11 yields

W = K [K,, I (12.5-12)

where Ky, is the P x P covariance matrix of the observation vector (assumed nons-
ingular) and K, is the O x P cross-covariance matrix between the image and obser-
vation vectors. Thus, the optimal bias vector b and restoration matrix W may be
directly determined in terms of the first and second joint moments of the ideal image
and observation vectors. It should be noted that these solutions apply for nonlinear
and space-variant degradations. Subsequent sections describe applications of
Wiener estimation to specific restoration models.

Wiener Estimation: Image Blur with Additive Noise. For the discrete model for a
blurred image subjective to additive noise given by

g =Bf+n (12.5-13)
the Wiener estimator is composed of a bias term
b = E{f} -WE{g} = E{f} - WBE{f} + WE{n} (12.5-14)
and a matrix operator

W = Kp,[K,, I = KB [BKB + K, (12.5-15)

If the ideal image field is assumed uncorrelated, K; = G?I where 0? represents
the image energy. Equation 12.5-15 then reduces to

W = oB"[c’BB + K] (12.5-16)

For a white-noise process with energy Glzl , the Wiener filter matrix becomes

2
w =8’ (BBT+ c—glJ (12.5-17)
Of

As the ratio of image energy to noise energy (0?/(5121) approaches infinity, the
Wiener estimator of Eq. 12.5-17 becomes equivalent to the generalized inverse
estimator.
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Blurred Restored

bgr=be=1.2,Var=10.0, p=0.75, SNR = 200.0
(a) PLSE =4.91% (b) PLSE =3.71%

br=bc=150.0, Var=10.0, p=0.75, SNR = 200.0

(c) PLSE = 7.99% (d) PLSE = 4.20%

bg=bg=50.0, Var = 100.0, p = 0.75, SNR = 60.0
(6) PLSE = 7.93% (f) PLSE = 4.74%

FIGURE 12.5-2. Wiener estimation for test image blurred with Gaussian-shaped impulse
response. M =8, N=12, L =5.
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Figure 12.5-2 shows restoration examples for the model of Figure 11.5-3 for a
Gaussian-shaped blur function. Wiener restorations of large size images are given in
Figure 12.5-3 using a fast computational algorithm developed by Pratt and Davarian
(22). In the example of Figure 12.5-3a illustrating horizontal image motion blur, the
impulse response is of rectangular shape of length L = 11. The center pixels have
been restored and replaced within the context of the blurred image to show the
visual restoration improvement. The noise level and blur impulse response of the
electron microscope original image of Figure 12.5-3c were estimated directly from
the photographic transparency using techniques to be described in Section 12.7. The
parameters were then utilized to restore the center pixel region, which was then
replaced in the context of the blurred original.

(a) Observation (b) Restoration

(c) Observation (d) Restoration

FIGURE 12.5-3. Wiener image restoration.

12.6. CONSTRAINED IMAGE RESTORATION

The previously described image restoration techniques have treated images as
arrays of numbers. They have not considered that a restored natural image should
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be subject to physical constraints. A restored natural image should be spatially
smooth and strictly positive in amplitude.

12.6.1. Smoothing Methods

Smoothing and regularization techniques (34-36) have been used in an attempt to
overcome the ill-conditioning problems associated with image restoration. Basi-
cally, these methods attempt to force smoothness on the solution of a least-squares
error problem.

Two formulations of these methods are considered (21). The first formulation
consists of finding the minimum of f'st subject to the equality constraint

[g—Bf) M[g—Bf] = ¢ (12.6-1)

where S is a smoothing matrix, M is an error-weighting matrix, and e denotes a
residual scalar estimation error. The error-weighting matrix is often chosen to be
equal to the inverse of the observation noise covariance matrix, M = K;l. The
Lagrangian estimate satisfying Eq. 12.6-1 is (19)

~ -1
f= s"BT[Bs"BH%M"] g (12.6-2)

In Eq. 12.6-2, the Lagrangian factor y is chosen so that Eq. 12.6-1 is satisfied; that
is, the compromise between residual error and smoothness of the estimator is
deemed satisfactory.

Now consider the second formulation, which involves solving an equality-con-
strained least-squares problem by minimizing the left-hand side of Eq. 12.6-1 such
that

AT

£'8f=d (12.6-3)

where the scalar d represents a fixed degree of smoothing. In this case, the optimal
solution for an underdetermined nonsingular system is found to be

B BS B M g (12.6-4)

>
Il

A comparison of Eqs. 12.6-2 and 12.6-4 reveals that the two inverse problems are
solved by the same expression, the only difference being the Lagrange multipliers,
which are inverses of one another. The smoothing estimates of Eq. 12.6-4 are closely
related to the regression and Wiener estimates derived previously. If y = 0, S = I
and M = K;l where K, is the observation noise covariance matrix, then the
smoothing and regression estimates become equivalent. Substitution of y = 1,

_1 -1 . . . . .
S=K; and M = K, where K; is the image covariance matrix results in
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equivalence to the Wiener estimator. These equivalences account for the relative
smoothness of the estimates obtained with regression and Wiener restoration as
compared to pseudoinverse restoration. A problem that occurs with the smoothing
and regularizing techniques is that even though the variance of a solution can be
calculated, its bias can only be determined as a function of f.

12.6.2. Constrained Restoration Techniques

Equality and inequality constraints have been suggested (21) as a means of improving
restoration performance for ill-conditioned restoration models. Examples of con-
straints include the specification of individual pixel values, of ratios of the values of
some pixels, or the sum of part or all of the pixels, or amplitude limits of pixel values.

Quite often a priori information is available in the form of inequality constraints
involving pixel values. The physics of the image formation process requires that
pixel values be non-negative quantities. Furthermore, an upper bound on these val-
ues is often known because images are digitized with a finite number of bits
assigned to each pixel. Amplitude constraints are also inherently introduced by the
need to “fit” a restored image to the dynamic range of a display. One approach is lin-
early to rescale the restored image to the display image. This procedure is usually
undesirable because only a few out-of-range pixels will cause the contrast of all
other pixels to be reduced. Also, the average luminance of a restored image is usu-
ally affected by rescaling. Another common display method involves clipping of all
pixel values exceeding the display limits. Although this procedure is subjectively
preferable to rescaling, bias errors may be introduced.

If a priori pixel amplitude limits are established for image restoration, it is best to
incorporate these limits directly in the restoration process rather than arbitrarily
invoke the limits on the restored image. Several techniques of inequality constrained
restoration have been proposed.

_ Consider the general case of constrained restoration in which the vector estimate
f is subject to the inequality constraint

1<f<u (12.6-5)

where u and 1 are vectors containing upper and lower limits of the pixel estimate,
respectively. For least-squares restoration, the quadratic error must be minimized
subject to the constraint of Eq. 12.6-5. Under this framework, restoration reduces to
the solution of a quadratic programming problem (21). In the case of an absolute
error measure, the restoration task can be formulated as a linear programming prob-
lem (37,38). The a priori knowledge involving the inequality constraints may sub-
stantially reduce pixel uncertainty in the restored image; however, as in the case of
equality constraints, an unknown amount of bias may be introduced.

Figure 12.6-1 is an example of image restoration for the Gaussian blur model
of Chapter 11 by pseudoinverse restoration and with inequality constrained (21) in
which the scaled luminance of each pixel of the restored image has been limited to
the range of 0 to 255. The improvement obtained by the constraint is substantial.
Unfortunately, the quadratic programming solution employed in this example
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requires a considerable amount of computation. A brute-force extension of the
procedure does not appear feasible.

Several other methods have been proposed for constrained image restoration.
One simple approach, based on the concept of homomorphic filtering, is to take the
logarithm of each observation. Exponentiation of the corresponding estimates
automatically yields a strictly positive result. Burg (39), Edward and Fitelson (40)
and Frieden (6,41,42) have developed restoration methods providing a positivity
constraint, which are based on a maximum entropy principle originally employed
to estimate a probability density from observation of its moments. Huang et al. (43)
have introduced a projection method of constrained image restoration in which the
set of equations g = Bf are iteratively solved by numerical means. At each stage
of the solution the intermediate estimates are amplitude clipped to conform to
amplitude limits.

(a) Blurred observation

(b) Unconstrained restoration (c) Constrained restoration

FIGURE 12.6-1. Comparison of unconstrained and inequality constrained image restoration
for a test image blurred with Gaussian-shaped impulse response. bg=bc=12,M =12, N=8,
L = 5; noisy observation, Var = 10.0.
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12.7. BLIND IMAGE RESTORATION

Most image restoration techniques are based on some a priori knowledge of the
image degradation; the point luminance and spatial impulse response of the sys-
tem degradation are assumed known. In many applications, such information is
simply not available. The degradation may be difficult to measure or may be time
varying in an unpredictable manner. In such cases, information about the degrada-
tion must be extracted from the observed image either explicitly or implicitly. This
task is called blind image restoration (5,19,44-46). Discussion here is limited to
blind image restoration methods for gamma corrected images and to blurred
images subject to additive noise.

There are two major approaches to blind image restoration: direct measurement
and indirect estimation. With the former approach, the unknown system parameters,
e.g. blur impulse response and noise level, are first measured from an image to be
restored, and then these parameters are utilized in the restoration. Indirect estimation
methods employ techniques to either obtain a restoration or to determine key ele-
ments of a restoration algorithm.

12.7.1. Direct Measurement Methods

Direct measurement blind restoration of a blurred and noisy image usually requires
measurement of the blur impulse response and noise power spectrum or covariance
function of the observed image. The blur impulse response is usually measured by
isolating the image of a suspected object within a picture. By definition, the blur
impulse response is the image of a point-source object. Therefore, a point source in
the observed scene yields a direct indication of the impulse response. The image of a
suspected sharp edge can also be utilized to derive the blur impulse response. Aver-
aging several parallel line scans normal to the edge will significantly reduce noise
effects. The noise covariance function of an observed image can be estimated by
measuring the image covariance over a region of relatively constant background
luminance. References 5 and 47 to 50 provide further details on direct measurement
methods. Most techniques are limited to symmetric impulse response functions of
simple parametric form.

12.7.2. Indirect Estimation Methods

Gamma Estimation. As discussed in Section 3.5.3, video images are usually
gamma corrected to compensate for the nonlinearity of display devices, especially
cathode ray tube displays. Gamma correction is performed by raising the unit range
camera signal s to a power

g(s) =s" (12.7-1)

where 7y typically is about 0.45 for a CRT display. Most digital cameras use different
amounts of gamma, whose values, generally, are not made available to the camera
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user. In many image processing applications, it is advantageous to perform inverse
gamma correction

g (s) = 57 (12.7-2)

before processing to eliminate the point nonlinearity. Thus, some means is needed to
estimate the gamma of an unknown image.

Farid (51) has developed a clever means of gamma estimation, which is based
upon the observation that gamma correction of an image introduces high-order cor-
relations in the Fourier spectrum of an image. The amount of gamma correction can
be found by a minimization of the correlations. Because gamma correction is a point
process, gamma estimation can be determined by one-dimensional Fourier trans-
forms along rows or columns of an image. The gamma estimation algorithm (51),
which is similar to the estimation of a power spectrum using a Fast Fourier trans-
form (52), follows:

1. Perform inverse gamma correction to an image for a range of suspected
gamma values.

Extract one-dimensional signals x(n) from rows of the image.
Subdivide each x(n) into K possibly overlapping segments y,(m) .

Form the discrete Fourier transform y(u) of the kth segment.

A

Form the two-dimensional bicoherence function estimate. !

1 .
R + )
k

B(uy, uy) = (12.7-3)
1 21 2
Rl g + )
k k
6. Form the third-order correlation measure.
T T N
c= ¥ ¥ |B(uy, uy)| (12.7-4)

up = —T Uy = —TC
7. Determine the gamma value that minimizes Eq. 12.7-4
Accurate results have been reported for usage of this algorithm (51).
Temporal Averaging. Temporal redundancy of scenes in real-time television sys-

tems can be exploited to perform blind restoration indirectly. As an illustration,
consider the ith continuous domain observed image frame

Gi(x,y) = Fy(x,9) + Ni(x,y) (12.7-5)

1. The bicoherence function is a normalized version of the bispectrum (52,53).
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of a video sequence in which F,(x,y) is an ideal image and N,(x,y) is an additive
noise field independent of the ideal image. If the ideal image remains constant over
a sequence of M frames, then temporal summation of the observed images yields the
relation

M
1

M
LY Gn-1 3 Ny (12.7-6)

i=1 i=1

Fi(xy) =

The value of the noise term on the right side will tend toward its ensemble average
E{N(x,y)} for M large. In the common case of zero-mean white Gaussian noise,
the ensemble average is zero at all (x, y), and it is reasonable to form the estimate as

nols image B eight (mage average
H )

(c) Noisy image 2 (d) Temporal average

FIGURE 12.7-1 Temporal averaging of a sequence of eight noisy images. SNR = 10.0.
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M
Fi(ey) = 3 Gx) (12.7-7)
i=1

Figure 12.7-1 presents a computer-simulated example of temporal averaging of a
sequence of noisy images. In this example, the original image is unchanged in the
sequence. Each image observed is subjected to a different additive random noise
pattern.

The concept of temporal averaging is also useful for image deblurring. Consider an
imaging system in which sequential frames contain a relatively stationary object
degraded by a different linear-shiftinvariant impulse response H,(x, y) over each frame.
This type of imaging would be encountered, for example, when photographing distant
objects through a turbulent atmosphere if the object does not move significantly
between frames. By taking a short exposure at each frame, the atmospheric turbulence
is “frozen” in space at each frame interval. For this type of object, the degraded image
at the ith frame interval is given by

G,(x,y) = Fy(x,y) ®H,(x,y) (12.7-8)
fori=1, 2,..., M. The Fourier spectra of the degraded images are then
G(o,0) = Flo, o)A, o) (12.7-9)
On taking the logarithm of the degraded image spectra
In{ G(w,, my)} = In{% (o, my)} +In {#H (0, (oy)} (12.7-10)

the spectra of the ideal image and the degradation transfer function are found to
separate additively. It is now possible to apply any of the common methods of
statistical estimation of a signal in the presence of additive noise. If the degrada-
tion impulse responses are uncorrelated between frames, it is worthwhile to form
the sum

M M
z In{G(o,0)} =Mh{FHo,o)}+ Z In {#(0, )} (12.7-11)
i=1 i=1

because for large M the latter summation approaches the constant value

M
Hy(®,0) = lim {z In {70, (oy)}} (12.7-12)

M— el
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The term 7, (0., ®,) may be viewed as the average logarithm transfer function of
the atmospheric turbulence. An image estimate can be expressed as

Hy(o,, (oy)

M
m } 1 6.0 (127-13)

(o, (Dy) = exp {—
i=1
An inverse Fourier transform then yields the spatial domain estimate. In any practi-
cal imaging system, Eq. 12.7-8 must be modified by the addition of a noise compo-
nent N;(x, y). This noise component unfortunately invalidates the separation step of
Eq. 12.7-10, and therefore destroys the remainder of the derivation. One possible
ad hoc solution to this problem would be to perform noise smoothing or filtering on
each observed image field and then utilize the resulting estimates as assumed noise-
less observations in Eq. 12.7-13. Alternatively, the blind restoration technique of
Stockham et al. (44) developed for nonstationary speech signals may be adapted to
the multiple-frame image restoration problem.
Sroubek and Flusser (55) have proposed a blind image restoration solution for the
continuous domain model

G(x+a,y+b;)) = Fix,y) ®H,(x,y) +N;(x, y) (12.7-14)

where a; and b; are unknown translations of the observations. Their solution, which
is based upon maximum a posteriori (MAP) estimation, has yielded good experi-
mental results.

ARMA Parameter Estimation. Several researchers (45, 56-58) have explored the
use of ARMA parameter estimation as a means of blind image restoration. With this
approach, the ideal image F,(j, k) in the discrete domain is modelled as a two-
dimensional autoregressive (AR) process and the blur impulse response H(j, k) is
modelled as a two-dimensional moving average (MA) process. The AR process is
represented as

FiG k) =Y AGm, n)F G —m, k—n) + V(j, k) (12.7-15)

where A(0,0) = 1 and V(j, k) represents the modelling error, which is assumed to

be a zero-mean noise process with a covariance matrix K,,. This model is only valid

for ideal images that are relatively smooth. For such images, Jain (59) has used only

three terms in the AR model: A(1,0) = p,, A(0,1) = p, and A(1,1) = p,p, where

0<p,, p, <1 are the horizontal and vertical correlation factors of a Markov process.
The ARMA model of the discrete domain blurred image is

Fo(. k) = ZH(m,n)Fl(j—m,k—n)+N(j,k) (12.7-16)

m,n
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where the summation limits are over the support of the impulse response function
and N(j, k) represents zero-mean additive noise with covariance matrix K.

With the ARMA models established, the restoration problem reduces to estimat-
ing the parameter set:

{H(m, n), A(m, n), Gy, oy}

where 0,2\, and 0%, are the noise and modelling error variances, respectively. Two
methods have emerged for the solution of this estimation problem: the Maximum-
Likelihood method (56) and the Generalized Cross-Validation method (58). Refer-
ence 45 provides a concise description of the two methods.

Nonparametric Estimation. Nonparametric estimation methods utilize determinis-
tic constraints such as the nonnegativity of the ideal image, known finite support of
an object of interest in the ideal image and, with some methods, finite support of the
blur impulse response. Algorithms of this class include the Ayers and Dainty (60)
iterative blind deconvolution (/BD) method, the McCallum simulated annealing
method (61) and the Kundar and Hatzinakos NAS-RIF method (45,62). Discussion
in this section is limited to the most popular algorithm among the group, the IBD
method. .

To simplify the notation in the description of the IBD method, let F,(j, k)
denote the discrete domain ideal image estimate at the gth iteration and let
F,(u, v) be its discrete Fourier transform (DFT). Similarly, let H,(j, k) be the blur
impulse response estimate with #(u, v) its DFT. Finally, the observed image is
G(j, k), and G(u, v) is its DFT. The IBD algorithm, as described in reference 45,
follows:

1. Create initial estimate ﬁo(j, k)
2. Perform DFT to produce ffq(u, V)
3. Impose Fourier constraints to produce

Glu, v) Ty 1 (u, v)

|7y 0|3y ()

;[q(u, V) =

where o is a tuning constant, which describes the noise level.

4. Perform inverse DFT to produce I;Vq(j, k)

5. Impose blur constraints; truncate ﬁqU, k) to region of finite support to
produce I;Iq(j, k) .

6. Perform DFT to produce ﬁ[q(u, V)
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7. Impose Fourier constraints to produce

G(u, ) H, 1" (u, v)

Fylu,v) = — 5
Hy_1(u, v)‘ + a/‘fq(u, v)‘

8. Perform inverse DFT to produce 1:"‘1(j, k)

9. Impose image constraints; replace negative value pixels within image sup-
port by zeros and replace nonzero pixels outside image support by back-
ground value to produce F,(j, k) .

10. Assess result and exit if acceptable; otherwise increment g and proceed to
step 2.

Reference 45 contains simulation examples of the IBD and the NAS-RIF methods.

12.8. MULTI-PLANE IMAGE RESTORATION

A multi-plane image consists of a set of two or more related pixel planes.1 Examples
include:

color image, e.g. RGB, CMYK, YCbCr, L*a*b*
multispectral image sequence

volumetric image, e.g. computerized tomography
temporal image sequence

This classification is limited to three-dimensional images.2

Multi-Plane Restoration Methods. The monochrome image restoration techniques
previously discussed in this chapter can be applied independently to each pixel plane
of a multi-plane image. However, with this strategy, the correlation between pixel
planes is ignored; the restoration results, on a theoretical basis, will be sub-optimal
compared to joint processing of all of the bands.

In the remainder of this section, consideration is given to the problem of deblur-
ring a multi-plane image using Wiener filtering techniques. The results obtained can
be generalized to other filtering methods. In Eq. 12.5-13, a stacked discrete model

1. In the literature, such images are often called multi-channel.

2. The PIKS image processing software application program interface introduced in Chapter 20
defines a five-dimensional image space with indices x, y for space, z for depth, ¢ for time and b for
spectral band.
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was developed for a monochrome image subject to blur and additive noise. This
model can be applied to the jth pixel plane according to the relation

g = Bf.+n, (12.8-1)

where g; is a M? Vector of the jth blurred plane, f; is a N? vector of the ideal image
samples n; isa M? vector of additive noise samples and B isa M’ xN° spatial blur
matrix. Hunt and Kubler (63) have proposed a generalization of Eq. 12.8-1 in which
the multi-plane observation is modeled as

& = Bf+n (12.8-2)

glzegfufnjatL?;igsz gJJT and f = [fl £, fJJT and n = [“1 ny o nfT and

B O 0

o 0

B = : (12.8-3)
00 B

W = KB [BKB +K,] (12.8-4)

where K; and K, are the covariance matrices of the multi-plane image and noise
respectively.

At this point in the derivation, a mathematically well-posed, but computationally
intractable solution to the multi-plane image restoration problem has been achieved.
The computational difficulty being the inversion of an extremely large matrix in Eq.
12.8-4. Hunt and Kubler (63) have made two simplifying assumptions regarding the
structure of Eq. 12.8-4. First is the assumption that the noise is white noise, which is
plane independent. Second is that the image covariance matrix can be separated into
a space covariance matrix K; and a plane covariance matrix K, according to the
kronecker matrix product (see Eq. 6.3-14)

Kr = K, ®K; (12.8-5)

Under the second assumption, with an estimate of K, a Karhunen-Loeve transform
can be performed across the planes, and each transformed plane can be restored by a
two-dimensional Wiener estimator. Reference 63 provides details of the restoration
algorithm.
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Galatsanos and Chin (64) have developed a multi-plane image restoration algo-
rithm, which does not make the covariance separability assumption of Eq. 12.8-5.
Their algorithm exploits the structure of the multi-plane covariance matrix. Galat-
sanos et al. (65) have proposed a spatially adaptive, multi-plane least squares filter
that avoids the covariance separability assumption.

Color Restoration Methods. The multi-plane image restoration methods previ-
ously discussed can be applied to color images. But such methods ignore the percep-
tual significance of the color planes.

If a multi-plane restoration method is to be applied to a RGB color image, care
should be taken that the red, green and blue sensor signals are not gamma cor-
rected.This is especially true when using a linear restoration filter, such as a Wiener
filter, because the filter is designed to work on a linear blur plus additive noise
model without point nonlinearities. If the gamma value is known, then inverse
gamma processing following Eq. 12.7-2 can be performed directly; otherwise the
gamma value can be estimated from the gamma corrected image using the method
described in Section 12.7.

In their pioneering paper (63), Hunt and Kubler proposed the use of a Karhunen-
Loeve (K-L) transformation across image planes, to produce three bands Ky, K, K3,
which are spatially filtered independently. A problem with this approach is the
amount of computation associated with the estimation of the inter-plane covariance
matrix K, and the K-L transformation itself. Hunt and Kubler have substituted the
RGB to YIQ luma/chroma transformation of Eq. 13.5-15a for the K-L transform.
They found that the YIQ transformation was almost as good as the K-L transform in
performing inter-plane decorrelation. They also obtained good experimental results
by deblurring only the Y plane.

Altunbasak and Trussell (66) have performed a comprehensive evaluation of
multi-plane Wiener filtering color image restoration for three, four and five color
filter bands, various size blur impulse response arrays and a range of noise levels
for K~L and independent color plane processing. Their experimental results indi-
cate that the usage of more than three bands only achieves slight mean square
error and visual improvement. Also, their studies showed that K-L processing
was more effective than independent plane processing in terms of mean square
error in Lab space.
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13

GEOMETRICAL IMAGE MODIFICATION

One of the most common image processing operations is geometrical modification
in which an image is spatially translated, scaled in size, rotated, nonlinearly warped
or viewed from a different perspective (1).

13.1. BASIC GEOMETRICAL METHODS

Image translation, size scaling and rotation can be analyzed from a unified stand-
point. Let D(j, k) for 0<j<J-1 and 0<k<K-1 denote a discrete destination
image that is created by geometrical modification of a discrete source image S(p, q)
for 0<p<P-1 and 0<g<Q-1. In this derivation, the source and destination
images may be different in size. Geometrical image transformations are usually
based on a Cartesian coordinate system representation in which pixels are of unit
dimension, and the origin (0, 0) is at the center of the upper left corner pixel of an
image array. The relationships between the Cartesian coordinate representations and
the discrete image array of the destination image D(j, k) are illustrated in Figure
13.1-1. The destination image array indices are related to their Cartesian coordinates
by

(13.1-1a)

ve = k+l (13.1-1b)

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.
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K-1 —l r

FIGURE 13.1-1. Relationship between discrete image array and Cartesian coordinate repre-
sentation of a destination image D(j, k).

Similarly, the source array relationship is given by
u, =p+i (13.1-2a)

v o= q+% (13.1-2b)

13.1.1. Translation

Translation of S(p,q) with respect to its Cartesian origin to produce D(j, k)
involves the computation of the relative offset addresses of the two images. The
translation address relationships are

Xp = Uyt (13.1-3a)
Y = Vgt (13.1-3b)

where 7, and 7, are translation offset constants. There are two approaches to this
computation for discrete images: forward and reverse address computation. In the
forward approach, u, and v, are computed for each source pixel (p,q) and
substituted into Eq. 13.1-3 to obtain x; and y,. Next, the destination array
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addresses (j, k) are computed by inverting Eq. 13.1-1. The composite computation
reduces to

J=p+t (13.1-4a)

X

K =g+t (13.1-4b)

where the prime superscripts denote that j* and k” are not integers unless ¢, and ¢,
are integers. If j* and k” are rounded to their nearest integer values, data voids can
occur in the destination image. The reverse computation approach involves calcula-
tion of the source image addresses for integer destination image addresses. The
composite address computation becomes

p=j-t (13.1-52)
q = k-1, (13.1-5b)
where again, the prime superscripts indicate that p” and ¢’ are not necessarily inte-
gers. If they are not integers, it becomes necessary to interpolate pixel amplitudes of

S(p, q) to generate a resampled pixel estimate S(p,q), which is transferred to
D(j, k) . The geometrical resampling process is discussed in Section 13.5.

13.1.2. Scaling

Spatial size scaling of an image can be obtained by modifying the Cartesian coordi-
nates of the source image according to the relations

X; =8, (13.1-6a)
Y =8,V (13.1-6b)

where s, and s, are positive-valued scaling constants, but not necessarily integer
valued. If 5, and s, are each greater than unity, the address computation of Eq.
13.1-6 will lead to magnification. Conversely, if s, and s, are each less than unity,
minification results. The reverse address relations for the source image address are
found to be

pr=2) (13.1-7a)
1
g =—2-1 (13.1-7b)

As with generalized translation, it is necessary to interpolate S(p,q) to obtain
D(j, k) .
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13.1.3. Rotation

Rotation of an input image about its Cartesian origin can be accomplished by the
address computation

i, cos e—vp sin 6 (13.1-8a)

Xk

yj = u,sin@+v, cosd (13.1-8b)
where 6 is the counterclockwise angle of rotation with respect to the horizontal axis
of the source image. Again, interpolation is required to obtain D(j, k) . Rotation of a
source image about an arbitrary pivot point can be accomplished by translating the
origin of the image to the pivot point, performing the rotation, and then translating
back by the first translation offset. Equation 13.1-8 must be inverted and substitu-
tions made for the Cartesian coordinates in terms of the array indices in order to
obtain the reverse address indices (p’, ¢”) . This task is straightforward but results in
a messy expression. A more elegant approach is to formulate the address computa-
tion as a vector-space manipulation.

13.1.4. Generalized Linear Geometrical Transformations

The vector-space representations for translation, scaling and rotation are given
below.

[ x.] [u t |

Translation: Th= | Pl+]" (13.1-9)

Vi | Vg ly

A o

Scaling: KA R (13.1-10)
V] L 0 sy]]vg

. [x] [cos @ —sin 0] u

Rotation: = P (13.1-11)

| Yk]  |sin ® cos 8] Vg

Now, consider a compound geometrical modification consisting of translation, fol-
lowed by scaling, followed by rotation. The address computations for this compound
operation can be expressed as

X; cos® —sin@|[s u cos O —sin®|| S
| = O, O] (1304120
Vi sin® cosO|| 0 syl Vg sin® cosO|| 0 sy ||ty
or upon consolidation

0 —s si in ol
FJ} _ 5,c0s0 —s sin O Fﬂ . 51 c0sO — st sin 6 13.1-125)
q

Vi 5,.sin© s, cos 0||v sxtxsme +5,1, cos 0
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Equation 13.1-12b is, of course, linear. It can be expressed as

Gl oo ]2 (13.1-13a)
Yk dy d, Vg d,

in one-to-one correspondence with Eq. 13.1-12b. Equation 13.1-13a can be rewrit-
ten in the more compact form

A R R (13.1-13b)
Vi dy dy d, Yy

As a consequence, the three address calculations can be obtained as a single linear
address computation. It should be noted, however, that the three address calculations are
not commutative. Performing rotation followed by minification followed by translation
results in a mathematical transformation different than Eq. 13.1-12. The overall results
can be made identical by proper choice of the individual transformation parameters.

To obtain the reverse address calculation, it is necessary to invert Eq. 13.1-13b to
solve for (u,v,) in terms of (X Vi) - Because the matrix in Eq. 13.1-13b is not
square, it does not possess an inverse. Although it is possible to obtain (u,,v,) by a
pseudoinverse operation, it is convenient to augment the rectangular matrix as follows:

Xj CO Cl Cz Mp
ve| = | dy dy dy ||, (13.1-14)
1 0o 0 1 1

This three-dimensional vector representation of a two-dimensional vector is a
special case of a homogeneous coordinates representation (2—4).

The use of homogeneous coordinates enables a simple formulation of concate-
nated operators. For example, consider the rotation of an image by an angle 6 about
a pivot point (x,,y,) in the image. This can be accomplished by

Xj 1 0 x,||cos® —sin®@ O[| 1 0 —x, |4
Ye| T 10 1 y. || sin® cos® O[] O 1 -y ||v, (13.1-15)
1 0 0 1 0 0 1 0 0 1 1

which reduces to a single 3 x 3 transformation:

X cos0 —-sin®  —x,cosO +y_sin0 +x, u,
Ye| = | sin® cosO —x,.sin@ —y_cosO +y, vy (13.1-16)
1 0 0 1 1
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The reverse address computation for the special case of Eq. 13.1-16, or the
more general case of Eq. 13.1-13, can be obtained by inverting the 3 x 3 transfor-
mation matrices by numerical methods. Another approach, which is more compu-
tationally efficient, is to initially develop the homogeneous transformation matrix
in reverse order as

“p ag @y ay|| %
v,| = |bg by by|| M (13.1-17)
1 0 0 1 1
where for translation
ag =1 (13.1-18a)
a, =0 (13.1-18b)
a, =-t, (13.1-18c)
by =0 (13.1-18d)
b, =1 (13.1-18e)
by =-t, (13.1-18f)
and for scaling
ag =1/s, (13.1-19a)
a, =0 (13.1-19b)
ay, =0 (13.1-19c¢)
by =0 (13.1-19d)
by =1/s, (13.1-19¢)
b, =0 (13.1-19f)
and for rotation
a, = cos@ (13.1-20a)
a, =sin® (13.1-20b)

ay =0 (13.1-20c)



BASIC GEOMETRICAL METHODS 393

b, =—sin® (13.1-20d)
b, = cos® (13.1-20e)
b, =0 (13.1-20f)

Address computation for a rectangular destination array D(j, k) from a rectan-
gular source array S(p, gq) of the same size results in two types of ambiguity: some
pixels of S(p, g) will map outside of D(}, k) ; and some pixels of D(j, k) will not
be mappable from S(p, ¢) because they will lie outside its limits. As an example,
Figure 13.1-2 illustrates rotation of an image by 45° about its center. If the desire
of the mapping is to produce a complete destination array D(j, k) , it is necessary
to access a sufficiently large source image S(p,¢) to prevent mapping voids in
D(j, k) . This is accomplished in Figure 13.1-2d by embedding the original image
of Figure 13.1-2a in a zero background that is sufficiently large to encompass the
rotated original.

(a) Original, 500 x 500 (b) Rotated, 500 x 500

(c) Original, 708 x 708 (d) Rotated, 708 x 708

FIGURE 13.1-2. Image rotation by -45° on the washington_ ir image about its center.
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13.1.5. Affine Transformation

The geometrical operations of translation, size scaling and rotation are special cases
of a geometrical operator called an affine transformation. It is defined by Eq. 13.1-
130, in which the constants ¢; and d; are general weighting factors. The affine trans-
formation is not only useful as a generalization of translation, scaling and rotation. It
provides a means of image shearing in which the rows or columns are successively
uniformly translated with respect to one another. Figure 13.1-3 illustrates image
shearing of rows of an image. In this example, ¢, = d; = 1.0, ¢, = 0.1, d;, = 0.0
and ¢, = d, = 0.0.

(a) Original (b) Sheared

FIGURE 13.1-3. Horizontal image shearing on the washington ir image.

13.1.6. Separable Rotation

The address mapping computations for translation and scaling are separable in the
sense that the horizontal output image coordinate x; depends only on u,, and y;
depends only on v,. Consequently, it is possible to perform these operations separa-
bly in two passes. In the first pass, a one-dimensional address translation is per-
formed independently on each row of an input image to produce an intermediate
array I(j, q) . In the second pass, columns of the intermediate array are processed
independently to produce the final result D(j, k) .

Referring to Eq. 13.1-8, it is observed that the address computation for rotation
is of a form such that x; is a function of both u, and v ; and similarly for y;. One
might then conclude that rotation cannot be achieved by separable row and col-
umn processing, but Catmull and Smith (5) have demonstrated otherwise. In the
first pass of the Catmull and Smith procedure, each row of S(p, ¢) is mapped into
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the corresponding row of the intermediate array I(j,g) using the standard row
address computation of Eq. 13.1-8a. Thus

X; = u, cosO—v, sin0 (13.1-21)
Then, each column of 1(j, g) is processed to obtain the corresponding column of
D(j, k) using the address computation

sin®
Y, = oSO+ v (13.1-22)

cos O

Substitution of Eq. 13.1-21 into Eq. 13.1-22 yields the proper composite y-axis
transformation of Eq. 13.1-8b. The “secret” of this separable rotation procedure is
the ability to invert Eq. 13.1-21 to obtain an analytic expression for ), in terms of x;.
In this case,

_ KjHvsin (13.1-23)

u
P cos 0

when substituted into Eq. 13.1-21, gives the intermediate column warping function
of Eq. 13.1-22.

The Catmull and Smith two-pass algorithm can be expressed in vector-space
form as

X; 1 0 cos O —sin O up,
= 1 (13.1-24)
tan 0 s 0 1 .

The separable processing procedure must be used with caution. In the special case
of a rotation of 90°, all of the rows of S(p, g) are mapped into a single column of
I(p, k) , and hence the second pass cannot be executed. This problem can be
avoided by processing the columns of S(p, ¢) in the first pass. In general, the best
overall results are obtained by minimizing the amount of spatial pixel movement.
For example, if the rotation angle is + 80°, the original should be rotated by +90°
by conventional row—column swapping methods, and then that intermediate image
should be rotated by —10° using the separable method.

Figure 13.1-4 provides an example of separable rotation of an image by 45°.
Figure 13.1-4a is the original, Figure 13.1-4b shows the result of the first pass and
Figure 13.1-4c presents the final result.

Separable, two-pass rotation offers the advantage of simpler computation com-
pared to one-pass rotation, but there are some disadvantages to two-pass rotation.
Two-pass rotation causes loss of high spatial frequencies of an image because
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of the intermediate scaling step (6), as seen in Figure 13.1-4b. Also, there is the
potential of increased aliasing error (6,7), as discussed in Section 13.5.

Several authors (6,8,9) have proposed a three-pass rotation procedure in
which there is no scaling step and hence no loss of high-spatial-frequency con-
tent with proper interpolation. The vector-space representation of this procedure
is given by

F]} _ {1 —tan(e/z)H 1 0”1 _tan(e/Z)Hﬂ (13.125)
e 0 1 sin® 1|0 1 Vg

(a) Original

(b) First-pass result (c) Second-pass result

FIGURE 13.1-4. Separable two-pass image rotation on the washington ir image.
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(a) Original (b) First-pass result

(c) Second-pass result (d) Third-pass result

FIGURE 13.1-5. Separable three-pass image rotation on the washington ir image.

This transformation is a series of image shearing operations without scaling. Figure
13.1-5 illustrates three-pass rotation for rotation by 45°.

13.1.7. Polar Coordinate Conversion

Certain imaging sensors, such as a scanning radar sensor and an ultrasound sensor,
generate pie-shaped images in the spatial domain inset into a zero-value back-
ground. Some algorithms process such data by performing a Cartesian-to-polar
coordinate conversion, manipulating the polar domain data and then performing an
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inverse polar-to-Cartesian coordinate conversion. Figure 13.1-6 illustrates the
geometry of the Cartesian-to-polar conversion process. Upon completion of the con-
version, the destination image will contain linearly scaled versions of the rho and
theta polar domain values.

< o-1 Cartesian source, S(p, q)

Pumin [ Pmax
0 el J-1
®min 0
o k
\ l
emax K1

polar destination, D(j, k)

FIGURE 13.1-6. Relationship of source and destination images for Cartesian-to-polar
conversion.
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Cartesian-to-Polar. The Cartesian-to-polar conversion process involves an
inverse address calculation for each destination image address. For each (j, k),

compute

j[pmax B pmin]

py) = T-1 * Pomin
k[emax_emin]
(k) = —max__min_ g
K-1
And for each p(j) and 6(k) compute
P = [pQ)lcos{B(k)}
q = [p()lsin{6(k)}

(13.1-26a)

(13.1-26b)

(13.1-26¢)

(13.1-26d)

For each (p', ¢') non-integer source address, interpolate its nearest neighbours, and

transfer the interpolated pixel to D(j, k) .

Polar-to-Cartesian. The polar-to-Cartesian conversion process also involves an

inverse address calculation. For each (j, k), compute
. [2 2
pPU) = N +k

(k) = atan{’-f}
j

And for each p(j) and 6(k) compute

. PG =Pyl P = 1]
p =

Pmax = Pmin

_18(k)-6,,,110-1]
- )

max min

Then interpolate S(p', ¢') to obtain D(j, k) .

(13.1-27a)

(13.1-27b)

(13.1-27c)

(13.1-27d)
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13.2. SPATIAL WARPING

The address computation procedures described in the preceding section can be
extended to provide nonlinear spatial warping of an image. In the literature, this
process is often called rubber-sheet stretching (16,17). Let

x =X(u,v) (13.2-1a)
y = Y(u,v) (13.2-1b)
denote the generalized forward address mapping functions from an input image to

an output image. The corresponding generalized reverse address mapping functions
are given by

u = Uxy) (13.2-2a)

v =V(x,y) (13.2-2b)

For notational simplicity, the (j, k) and (p, g) subscripts have been dropped from

these and subsequent expressions. Consideration is given next to some examples and
applications of spatial warping.

The reverse address computation procedure given by the linear mapping of Eq.

13.1-17 can be extended to higher dimensions. A second-order polynomial warp
address mapping can be expressed as

u =aO+alx+(12y+a3x2+a4xy+asy2 (13.2-3a)
v =by+bx+ b2y+b3x2+ byxy + b5y2 (13.2-3b)
In vector notation,
u | lay ay a, ay a, as|| 1
{v}_{bo b, by by by bs|| *
y

(13.2-3¢)

For first-order address mapping, the weighting coefficients (a,, b;) can easily be related
to the physical mapping as described in Section 13.1. There is no simple physical
counterpart for second address mapping. Typically, second-order and higher-order
address mapping are performed to compensate for spatial distortion caused by a
physical imaging system. For example, Figure 13.2-1 illustrates the effects of imag-
ing a rectangular grid with an electronic camera that is subject to nonlinear pincush-
ion or barrel distortion.
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(a) Original (b) Pincushion distortion (c) Barrel distortion

FIGURE 13.2-1. Geometric distortion.

Figure 13.2-2 presents a generalization of the problem. An ideal image S(j, k) is
subject to an unknown physical spatial distortion. The observed image is measured
over a rectangular array O(p, q) . The objective is to perform a spatial correction
warp to produce a corrected image array S(j, k) . Assume that the address mapping
from the ideal image space to the observation space is given by

u=0/{xy} (13.2-4a)
v =0,{x,y} (13.2-4b)

where O,{x,y} and O /{x,y} are physical mapping functions. If these mapping

functions are known, then Eq. 13.2-4 can, in principle, be inverted to obtain the proper
corrective spatial warp mapping. If the physical mapping functions are not known, Eq.
13.2-3 can be considered as an estimate of the physical mapping functionsbased on
the weighting coefficients (a,, b;) . These polynomial weighting coefficients

OBSERVED PIXEL VALUE

INTERPOLATED POINT CORRECTED ——1
PIXEL VALUE (j,k)

PHYSICAL CORRECTION
o———m SPATIAL SPATIAL e ——)
IMAGE IMAGE IMAGE
SPACE SPACE SP&CE
F(j k) olp,q) F(j,k)

FIGURE 13.2-2. Spatial warping concept.
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are normally chosen to minimize the mean-square error between a set of observation
coordinates (u,,v,) and the polynomial estimates (u,v) for a set (1<m<M) of
known data points (x,,y,) called control points. It is convenient to arrange the
observation space coordinates into the vectors

u' = up ey, ) (13.2-5a)
V= v vy e vy (13.2-5b)
Similarly, let the second-order polynomial coefficients be expressed in vector form as
a' =[aga,,...,as] (13.2-6a)
b =[by by, ..., bs] (13.2-6b)

The mean-square estimation error can be expressed in the compact form
£ = (u—Aa) (u—Aa)+(v—Ab) (v—Ab) (13.2-7)

where

2 2
1 X1 Y1 X XY N

1 X y xz Xny y2
A< 2 2 2 Y2 )2 (13.2-8)

2 2
Lxy v Ym Ymdu Yy |

From Appendix 1, it has been determined that the error will be minimum if
a=Au (13.2-9a)

b=Av (13.2-9b)

where A™ is the generalized inverse of A. If the number of control points is chosen
greater than the number of polynomial coefficients, then

A = [ATA] A (13.2-10)

provided that the control points are not linearly related. Following this proce-
dure, the polynomial coefficients (a;,b;) can easily be computed, and the
address mapping of Eq. 13.2-1 can be obtained for all (j, k) pixels in the cor-
rected image. Of course, proper interpolation is necessary.

Equation 13.2-3 can be extended to provide a higher-order approximation to the
physical mapping of Eq. 13.2-3. However, practical problems arise in computing
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the pseudoinverse accurately for higher-order polynomials. For most applications,
second-order polynomial computation suffices. Figure 13.2-3 presents an example
of second-order polynomial warping of an image. In this example, the mapping of
control points is indicated by the graphics overlay.

The spatial warping techniques discussed in this section have application for two
types of geometrical image manipulation: image mosaicing and image blending.
Image mosaicing involves the spatial combination of a set of partially overlapped
images to create a larger image of a scene. Image blending is a process of creating a
set of images between a temporal pair of images such that the created images form a
smooth spatial interpolation between the reference image pair. References 11 to 15
provide details of image mosaicing and image blending algorithms.

(a) Source control points (b) Destination control points

(c) Warped
FIGURE 13.2-3. Second-order polynomial spatial warping on the mandrill mon image.
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13.3. PERSPECTIVE TRANSFORMATION

Most two-dimensional images are views of three-dimensional scenes from the phys-
ical perspective of a camera imaging the scene. It is often desirable to modify an
observed image so as to simulate an alternative viewpoint. This can be accomplished
by use of a perspective transformation.

Figure 13.3-1 shows a simple model of an imaging system that projects points of light
in three-dimensional object space to points of light in a two-dimensional image plane
through a lens focused for distant objects. Let (X, Y, Z) be the continuous domain coor-
dinate of an object point in the scene, and let (x, y) be the continuous domain-projected
coordinate in the image plane. The image plane is assumed to be at the center of the coor-
dinate system. The lens is located at a distance f'to the right of the image plane, where f'is
the focal length of the lens. By use of similar triangles, it is easy to establish that

x =]T]:}‘(Z (13.3-1a)
y =ff_7 (13.3-1b)

Thus, the projected point (x, y) is related nonlinearly to the object point (X, Y, Z) .
This relationship can be simplified by utilization of homogeneous coordinates, as
introduced to the image processing community by Roberts (1).

Let

(13.3-2)

<
I
N~ >

FIGURE 13.3-1. Basic imaging system model.
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be a vector containing the object point coordinates. The homogeneous vector v cor-
responding to v is

v=|sY (13.3-3)

where s is a scaling constant. The Cartesian vector v can be generated from the
homogeneous vector v by dividing each of the first three components by the fourth.
The utility of this representation will soon become evident.

Consider the following perspective transformation matrix:

1 0 0 0

p=-|0 1 0 0O (13.3-4)
0 0 1 0
0 0 -1/f 1

This is a modification of the Roberts (1) definition to account for a different labeling
of the axes and the use of column rather than row vectors. Forming the vector
product

w = Pv (13.3-5a)
yields
sX
w=| Y (13.3-5b)
sZ
s—sZ/f

The corresponding image plane coordinates are obtained by normalization of w to
obtain

2
I
=
~ N

(13.3-6)

|7”
N N

T
N

It should be observed that the first two elements of w correspond to the imaging
relationships of Eq. 13.3-1.



406 GEOMETRICAL IMAGE MODIFICATION

It is possible to project a specific image point (x,, y;) back into three-dimensional
object space through an inverse perspective transformation

v=P'w (13.3-7a)
where
1 0 0 0
p'=|0 I 0 0 (13.3-7b)
0 0 1 0
0 0 1/f 1
and
le-
wo=| i (13.3-7¢)
SZ

In Eq. 13.3-7c, z; is regarded as a free variable. Performing the inverse perspective
transformation yields the homogeneous vector

w=| Vi (13.3-8)

s+sz;/f

The corresponding Cartesian coordinate vector is

_—7 (13.3-9)
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or equivalently,

x =ﬁ (13.3-10a)
y =B (13.3-10b)
f- Z;
= S (13.3-10¢)
Z _f—Zl- .

Equation 13.3-10 illustrates the many-to-one nature of the perspective transforma-
tion. Choosing various values of the free variable z; results in various solutions for
(X, 7, 2), all of which lie along a line from (x,y;) in the image plane through the
lens center. Solving for the free variable z; in Eq. 13.3-10¢ and substituting into Eqs.
13.3-10a and 13.3-10b gives

X = ?U_Z) (13.3-11a)
Y = ;C-i(f—Z) (13.3-11b)

The meaning of this result is that because of the nature of the many-to-one perspec-
tive transformation, it is necessary to specify one of the object coordinates, say Z, in
order to determine the other two from the image plane coordinates (x,, y,). Practical
utilization of the perspective transformation is considered in the next section.

13.4. CAMERA IMAGING MODEL

The imaging model utilized in the preceding section to derive the perspective
transformation assumed, for notational simplicity, that the center of the image plane
was coincident with the center of the world reference coordinate system. In this
section, the imaging model is generalized to handle physical cameras used in
practical imaging geometries (18). This leads to two important results: a derivation
of the fundamental relationship between an object and image point; and a means of
changing a camera perspective by digital image processing.

Figure 13.4-1 shows an electronic camera in world coordinate space. This camera
is physically supported by a gimbal that permits panning about an angle 6 (horizon-
tal movement in this geometry) and tilting about an angle ¢ (vertical movement).
The gimbal center is at the coordinate (X, Y, Z;) in the world coordinate system.
The gimbal center and image plane center are offset by a vector with coordinates
(X,,Y,,Z,).
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FIGURE 13.4-1. Camera imaging model.

If the camera were to be located at the center of the world coordinate origin, not
panned nor tilted with respect to the reference axes, and if the camera image plane
was not offset with respect to the gimbal, the homogeneous image model would be
as derived in Section 13.3; that is

W =Py (13.4-1)

where v is the homogeneous vector of the world coordinates of an object point, w
is the homogeneous vector of the image plane coordinates and P is the perspective
transformation matrix defined by Eq. 13.3-4. The camera imaging model can easily
be derived by modifying Eq. 13.4-1 sequentially using a three-dimensional exten-
sion of translation and rotation concepts presented in Section 13.1.

The offset of the camera to location (X, Y;, Z;) can be accommodated by the
translation operation

W = PT ¥ (13.4-2)
where
10 0 -Xg
T,=|9 10 (13.4-3)
00 1 -7
00 0 1

Pan and tilt are modeled by a rotation transformation

W = PRT¥ (13.4-4)
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where R = R Ry and
cos®—sin® 0 0
R, = sin® cos® 0 0 (13.4-5)
0 0 1 0
0 0 0 1
and
1 0 0 0
Rq) _ 0 cos¢ —sindg O (13.4-6)
0 sing cosd O
0 0 0 1
The composite rotation matrix then becomes
cos 0 —sin 6 0 0
R = | cos¢sin® cosdcos® —sing 0 (13.4-7)
singsin ® singcos ® cosd O
0 0 0 1
Finally, the camera-to-gimbal offset is modeled as
w = PT.RT;v (13.4-8)
where
100 -X,
.= |91 0% (13.4-9)
00 1 -2
00 0 1

Equation 13.4-8 is the final result giving the complete camera imaging model trans-
formation between an object and an image point. The explicit relationship between
an object point (X, Y, Z) and its image plane projection (x,y) can be obtained by
performing the matrix multiplications analytically and then forming the Cartesian
coordinates by dividing the first two components of w by the fourth. Upon perform-
ing these operations, one obtains

SIX=X5)cosO - (Y-Y;)sin 6 —X;]

X = i - - (13.4-10a)
—(X=Xg5)sin Osing— (YY) cosOsind —(Z—-Z;)cos o +Zy +f




410 GEOMETRICAL IMAGE MODIFICATION

B fIX=Xg)sinBcos o+ (Y—Y;)cosOcosd —(Z-Z;)sin — Y]

y = - - - (13.4-10b)
—(X=Xg)sinOsin¢ — (Y-Y;)cosOsind —(Z-Z;)cos ¢ +Zy+f

Equation 13.4-10 can be used to predict the spatial extent of the image of a physical
scene on an imaging sensor.

Another important application of the camera imaging model is to form an image
by postprocessing such that the image appears to have been taken by a camera at a
different physical perspective. Suppose that two images defined by w, and w, are
formed by taking two views of the same object with the same camera. The resulting
camera model relationships are then

W, = PT.R T, ¥ (13.4-11a)

W)

PTR,T ¥ (13.4-11b)

Because the camera is identical for the two images, the matrices P and T - are invari-
ant in Eq. 13.4-11. It is now possible to perform an inverse computation of Eq. 13.4-
11b to obtain

V=0T, IR ITA T P (13.4-12)

and by substitution into Eq. 13.4-11b, it is possible to relate the image plane coordi-
nates of the image of the second view to that obtained in the first view. Thus

Wy = PTOR,T [T ][R T[T [P, (13.4-13)

As a consequence, an artificial image of the second view can be generated by per-
forming the matrix multiplications of Eq. 13.4-13 mathematically on the physical
image of the first view. Does this always work? No, there are limitations. First, if
some portion of a physical scene were not “seen” by the physical camera, perhaps it
was occluded by structures within the scene, then no amount of processing will rec-
reate the missing data. Second, the processed image may suffer severe degradations
resulting from undersampling if the two camera aspects are radically different.
Nevertheless, this technique has valuable applications.

13.5. GEOMETRICAL IMAGE RESAMPLING

As noted in the preceding sections of this chapter, the reverse address computation
process usually results in an address result lying between known pixel values of an
input image. Thus, it is necessary to estimate the unknown pixel amplitude from its
known neighbors. This process is related to the image reconstruction task, as
described in Chapter 4, in which a space-continuous display is generated from an
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array of image samples. However, the geometrical resampling process is usually not
spatially regular. Furthermore, the process is discrete to discrete; only one output
pixel is produced for each input address.

In this section, consideration is given to the general geometrical resampling
process in which output pixels are estimated by interpolation of input pixels.
The special, but common case, of image magnification by an integer zooming
factor is also discussed. In this case, it is possible to perform pixel estimation by
convolution.

13.5.1. Interpolation Methods

The simplest form of resampling interpolation is to choose the amplitude of an out-
put image pixel to be the amplitude of the input pixel nearest to the reverse address.
This process, called nearest-neighbor interpolation, can result in a spatial offset
error by as much as 1/./2 pixel units. The resampling interpolation error can be sig-
nificantly reduced by utilizing all four nearest neighbors in the interpolation. A com-
mon approach, called bilinear interpolation, is to interpolate linearly along each row
of an image and then interpolate that result linearly in the columnar direction. Figure
13.5-1 illustrates the process. The estimated pixel is easily found to be

F(p',q") = (1=b)[(1-a)F(p, q)+aF(p+1, q)]

+b[(1-a)F(p,g+1)+aF(p+1,qg+1)] (13.5-1)

F(p.q) s Fp+1,q)
- .

l x

Fp'a)

o

* *
Flp,g+1) F(p+1,q+1)

FIGURE 13.5-1. Bilinear interpolation.
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where a = p'-p and b = ¢'—¢q. Although the horizontal and vertical interpolation
operations are each linear, in general, their sequential application results in a nonlin-
ear surface fit between the four neighboring pixels.

The expression for bilinear interpolation of Eq. 13.5-1 can be generalized for any
interpolation function R{x} that is zero-valued outside the range of +1 sample
spacing. With this generalization, interpolation can be considered as the summing of
four weighted interpolation functions as given by

F(p'.q") = F(p,)R{-b}R{a} +F(p+1,q)R{-b}R{~(1 —a)}

+F(p,g+ D)R{1-b}R{a}+F(p+1,g+ 1)R{1 -b}R{-(1-a)}
(13.5-2)

Su.pport 8
Support4 ~ Grid
Support 2 Grid
Grid

».g-3)
».q-2)
\j
(p.g-1)
\J
(-3.9) (r-2.9) (r-1.5) r.9) wtle)  0t2g) @*3.9) (pt4.q)
L] L] L] b d (pv’ qv) L] L] L[] L]
Z X gt interpolated
reference pixel pixel
(p.gt1)
(p.q+2)
(p.g+3)
p.gt4)

FIGURE 13.5-2. Support 2, 4 and 8 interpolation.
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In the special case of linear interpolation, R{x} = R,{x}, where R {x} is definedin
Eq. 4.3-2. Making this substitution, it is found that Eq. 13.5-2 is equivalent to the
bilinear interpolation expression of Eq. 13.5-1.

Figure 13.5-2 defines a generalized interpolation neighborhood for support 2, 4
and 8 interpolation in which the pixel F(p, ¢) is the nearest neighbor to the pixel to
be interpolated.

Typically, for reasons of computational complexity, resampling interpolation is
limited to a 4 x4 pixel neighborhood. For this case, the interpolated pixel may be
expressed in the compact form

2 2
Fp',q) = Y Y Fip+mg+mR{(m-a)}Rc{-(n-b)} (13.5-3)

m=—-1ln=-1

where R.(x) denotes a bicubic interpolation function such as a cubic B-spline or
cubic interpolation function, as defined in Section 4.3-2.

13.5.2. Convolution Methods

When an image is to be magnified by an integer zoom factor, pixel estimation can be
implemented efficiently by convolution (19). As an example, consider image magni-
fication by a factor of 2:1. This operation can be accomplished in two stages. First,
the input image is transferred to an array in which rows and columns of zeros are
interleaved with the input image data as follows:

A 0 B
A B
{C D} 0 0 O
cC 0 D
input image zero-interleaved
neighborhood neighborhood

Next, the zero-interleaved neighborhood image is convolved with one of the dis-
crete interpolation kernels listed in Figure 13.5-3. Figure 13.5-4 presents the
magnification results for several interpolation kernels. The inevitable visual
trade-off between the interpolation error (the jaggy line artifacts) and the loss of
high spatial frequency detail in the image is apparent from the examples.
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This discrete convolution operation can easily be extended to higher-order
magnification factors. For N:1 magnification, the core kernel is a NxN peg
array. For large kernels it may be more computationally efficient in many cases,
to perform the interpolation indirectly by Fourier domain filtering rather than by
convolution.

For color images, the geometrical image modification methods discussed in
this chapter can be applied separately to the red, green and blue components of
the color image. Vrhel (20) has proposed converting a color image to luma/
chroma (or lightness/chrominance) color coordinates and performing the geo-
metrical modification in the converted color space. Large support interpolation
is then performed on the luma or lightness component, and nearest neighbor
interpolation is performed on the luma/chrominance components. After the geo-
metrical processing is completed, conversion to RGB space is performed. This
type of processing takes advantage of the tolerance of the human visual system
to chroma or chrominance errors compared to luma/lightness errors.

Peg
11
11
Pyramid
1 2 1
-1 2 4 2
4
1 2 1
Bell
1331
113 9 9 3
163 9 9 3
1.3 3 1
Cubic B-spline
1 4 6 4 1
4 16 24 16 4
1
—| 6 24 36 24 6
64
4 16 24 16 4
1 4 6 4 1

FIGURE 13.5-3. Interpolation kernels for 2:1 magnification.
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(a) Original (b) Zero interleaved quadrant
(c) Peg (d) Pyramid
(e) Bell (f) Cubic B-spline

FIGURE 13.5-4. Image interpolation on the mandrill mon image for 2:1 magnification.



416

GEOMETRICAL IMAGE MODIFICATION

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

G. Wolberg, Digital Image Warping, IEEE Computer Society Press, Washington DC,
1990.

L. G. Roberts, “Machine Perception of Three-Dimensional Solids,” in Optical and Elec-
tro-Optical Information Processing, J. T. Tippett et al., Eds., MIT Press, Cambridge,
MA, 1965.

. D. F. Rogers, Mathematical Elements for Computer Graphics, 2nd ed., McGraw-Hill,

New York, 1989.

J. D. Foley et al., Computer Graphics: Principles and Practice in C, 2nd ed., Addison-
Wesley, Reading, MA, 1996.

E. Catmull and A. R. Smith, “3-D Transformation of Images in Scanline Order,” Com-
puter Graphics, SIGGRAPH '80 Proc., 14, 3, July 1980, 279-285.

M. Unser, P. Thevenaz and L. Yaroslavsky, “Convolution-Based Interpolation for
Fast, High-Quality Rotation of Images, IEEE Trans. Image Processing, IP-4, 10,
October 1995, 1371-1381.

D. Fraser and R. A. Schowengerdt, “Avoidance of Additional Aliasing in Multipass
Image Rotations,” IEEE Trans. Image Processing, IP-3, 6, November 1994, 721-735.

A. W. Paeth, “A Fast Algorithm for General Raster Rotation,” in Proc. Graphics Inter-
face ‘86-Vision Interface, 1986, 77-81.

P. E. Danielson and M. Hammerin, “High Accuracy Rotation of Images, in CVGIP:
Graphical Models and Image Processing, 54, 4, July 1992, 340-344.

M. R. Spillage and J. Liu, Schaum’s Mathematical Handbook of Formulas and Tables,
2nd ed., McGraw-Hill 1998.

D. L. Milgram, “Computer Methods for Creating Photomosaics,” IEEE Trans. Com-
puters, 24, 1975, 1113-1119.

D. L. Milgram, “Adaptive Techniques for Photomosaicing,” IEEE Trans. Computers,
26, 1977, 1175-1180.

S. Peleg, A. Rav-Acha and A. Zomet, “Mosaicing on Adaptive Manifolds,” IEEE Trans.
Pattern Analysis and Machine Intelligence, 22, 10, October 2000, 1144—-1154.

H. Nicolas, “New Methods for Dynamic Mosaicking,” IEEE Trans. Image Processing,
10, 8, August 2001, 1239-1251.

R. T. Whitaker, “A Level-Set Approach to Image Blending, /IEEE Trans. Image Process-
ing, 9, 11, November 2000, 1849-1861.

R. Bernstein, “Digital Image Processing of Earth Observation Sensor Data,” IBM J.
Research and Development, 20, 1, 1976, 40-56.

D. A. O’Handley and W. B. Green, “Recent Developments in Digital Image Processing
at the Image Processing Laboratory of the Jet Propulsion Laboratory,” Proc. IEEE, 60,
7, July 1972, 821-828.

K. S. Fu, R. C. Gonzalez and C. S. G. Lee, Robotics: Control, Sensing, Vision and Intel-
ligence, McGraw-Hill, New York, 1987.



REFERENCES 417

19. W. K. Pratt, “Image Processing and Analysis Using Primitive Computational Elements,”
in Selected Topics in Signal Processing, S. Haykin, Ed., Prentice Hall, Englewood Cliffs,
NJ, 1989.

20. M. Vrhel, “Color Image Resolution Conversion,” IEEE Trans. Image Processing, 14, 3,
March 2005, 328-333.






PART 5

IMAGE ANALYSIS

Image analysis is concerned with the extraction of measurements, data or
information from an image by automatic or semiautomatic methods. In the
literature, this field has been called image data extraction, scene analysis, image
description, automatic photo interpretation, image understanding and a variety of
other names.

Image analysis is distinguished from other types of image processing, such as
coding, restoration and enhancement, in that the ultimate product of an image
analysis system is usually numerical output rather than a picture. Image analysis
also diverges from classical pattern recognition in that analysis systems, by
definition, are not limited to the classification of scene regions to a fixed number of
categories, but rather are designed to provide a description of complex scenes whose
variety may be enormously large and ill-defined in terms of a priori expectation.






14

MORPHOLOGICAL IMAGE
PROCESSING

Morphological image processing is a type of processing in which the spatial form or
structure of objects within an image are modified. Dilation, erosion and skeletoniza-
tion are three fundamental morphological operations. With dilation, an object grows
uniformly in spatial extent, whereas with erosion an object shrinks uniformly. Skele-
tonization results in a stick figure representation of an object.

The basic concepts of morphological image processing trace back to the research
on spatial set algebra by Minkowski (1) and the studies of Matheron (2) on topology.
Serra (3-5) developed much of the early foundation of the subject. Steinberg (6,7)
was a pioneer in applying morphological methods to medical and industrial vision
applications. This research work led to the development of the cytocomputer for
high-speed morphological image processing (8,9).

In the following sections, morphological techniques are first described for binary
images. Then these morphological concepts are extended to gray scale images.

14.1. BINARY IMAGE CONNECTIVITY

Binary image morphological operations are based on the geometrical relationship or
connectivity of pixels that are deemed to be of the same class (10,11). In the binary
image of Figure 14.1-1a, the ring of black pixels, by all reasonable definitions of
connectivity, divides the image into three segments: the white pixels exterior to the
ring, the white pixels interior to the ring and the black pixels of the ring itself. The
pixels within each segment are said to be connected to one another. This concept of

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.
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FIGURE 14.1-1. Connectivity.

connectivity is easily understood for Figure 14.1-1a, but ambiguity arises when con-
sidering Figure 14.1-1b. Do the black pixels still define a ring, or do they instead
form four disconnected lines? The answers to these questions depend on the defini-
tion of connectivity.

Consider the following neighborhood pixel pattern:

X3 X2 Xl
X, X X,
X5 X X,

in which a binary-valued pixel F(j, k) = X , where X =0 (white) or X = 1 (black) is
surrounded by its eight nearest neighbors X, X,, ..., X; . An alternative nomencla-
ture is to label the neighbors by compass directions: north, northeast and so on:

NW N NE
4 X E
SW S SE

Pixel X is said to be four-connected to a neighbor if it is a logical 1 and if its east,
north, west or south (X, X,, X,, X,) neighbor is a logical 1. Pixel X is said to be
eight-connected if it is a logical 1 and if its north, northeast, etc. (X, X,,...,X;)
neighbor is a logical 1.

The connectivity relationship between a center pixel and its eight neighbors can
be quantified by the concept of a pixel bond, the sum of the bond weights between
the center pixel and each of its neighbors. Each four-connected neighbor has a bond
of two, and each eight-connected neighbor has a bond of one. In the following
example, the pixel bond is seven.
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0 00O 000 0 00
0 1 1 0o 1 1 010
010 0 01 000
Four-connected Eight-connected Isolated
B=4 B=3 B=0
0 0O 100 11 1
010 111 010
00 1 1 0 1 111
Spur Bridge H-connected
B= B=7 B=38
0 0O 011 0 11
011 11 1 01 1
011 11 1 011
Corner Interior Exterior
B=5 B=1 B=8

FIGURE 14.1-2. Pixel neighborhood connectivity definitions.

Under the definition of four-connectivity, Figure 14.1-15 has four disconnected
black line segments, but with the eight-connectivity definition, Figure 14.1-1b has a
ring of connected black pixels. Note, however, that under eight-connectivity, all
white pixels are connected together. Thus a paradox exists. If the black pixels are to
be eight-connected together in a ring, one would expect a division of the white pix-
els into pixels that are interior and exterior to the ring. To eliminate this dilemma,
eight-connectivity can be defined for the black pixels of the object, and four-connec-
tivity can be established for the white pixels of the background. Under this defini-
tion, a string of black pixels is said to be minimally connected if elimination of any
black pixel results in a loss of connectivity of the remaining black pixels. Figure
14.1-2 provides definitions of several other neighborhood connectivity relationships
between a center black pixel and its neighboring black and white pixels.

The preceding definitions concerning connectivity have been based on a discrete
image model in which a continuous image field is sampled over a rectangular array
of points. Golay (12) has utilized a hexagonal grid structure. With such a structure,
many of the connectivity problems associated with a rectangular grid are eliminated.
In a hexagonal grid, neighboring pixels are said to be six-connected if they are in the
same set and share a common edge boundary. Algorithms have been developed for
the linking of boundary points for many feature extraction tasks (13). However, two
major drawbacks have hindered wide acceptance of the hexagonal grid. First, most
image scanners are inherently limited to rectangular scanning. The second problem
is that the hexagonal grid is not well suited to many spatial processing operations,
such as convolution and Fourier transformation.
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14.2. BINARY IMAGE HIT OR MISS TRANSFORMATIONS

The two basic morphological operations, dilation and erosion, plus many variants
can be defined and implemented by a hit-or-miss transformation (3). The concept is
quite simple. Conceptually, a small odd-sized mask, typically 3 x 3, is scanned over
a binary image. If the binary-valued pattern of the mask matches the state of the pix-
els under the mask (hit), an output pixel in spatial correspondence to the center pixel
of the mask is set to some desired binary state. For a pattern mismatch (miss), the
output pixel is set to the opposite binary state. For example, to perform simple
binary noise cleaning, if the isolated 3 x 3 pixel pattern

S O O
S = O
oS o O

is encountered, the output pixel is set to zero; otherwise, the output pixel is set to the
state of the input center pixel. In more complicated morphological algorithms, a
large number of the 2’ = 512 possible mask patterns may cause hits.

It is often possible to establish simple neighborhood logical relationships that
define the conditions for a hit. In the isolated pixel removal example, the defining
equation for the output pixel G(j, k) becomes

G, k) = XNn(XyguX, U UXy) (14.2-1)

where M denotes the intersection operation (logical AND) and U denotes the union
operation (logical OR). For complicated algorithms, the logical equation method of
definition can be cumbersome. It is often simpler to regard the hit masks as a collec-
tion of binary patterns.

Hit-or-miss morphological algorithms are often implemented in digital image
processing hardware by a pixel stacker followed by a look-up table (LUT), as shown
in Figure 14.2-1 (14). Each pixel of the input image is a positive integer, represented
by a conventional binary code, whose most significant bit is a 1 (black) or a 0
(white). The pixel stacker extracts the bits of the center pixel X and its eight neigh-
bors and puts them in a neighborhood pixel stack. Pixel stacking can be performed
by convolution with the 3 x 3 pixel kernel

28 7 ot
P L o
)2 3 gt

The binary number state of the neighborhood pixel stack becomes the numeric input
address of the LUT whose entry is Y. For isolated pixel removal, integer entry 256,
corresponding to the neighborhood pixel stack state 100000000, contains Y = 0; all
other entries contain ¥ = X.
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FIGURE 14.2-1. Look-up table flowchart for binary unconditional operations.

Several other 3 x3 hit-or-miss operators are described in the following sub-
sections.

14.2.1. Additive Operators

Additive hit-or-miss morphological operators cause the center pixel of a 3x3
pixel window to be converted from a logical O state to a logical 1 state if the
neighboring pixels meet certain predetermined conditions. The basic operators
are now defined.

Interior Fill. Create a black pixel if all four-connected neighbor pixels are black.

G, k) = XU[XynX,nX,NX] (14.2-2)

Diagonal Fill. Create a black pixel if creation eliminates the eight-connectivity of
the background.

G(j,k) = Xu[P,UP,UP,UP,] (14.2-3a)
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where

In Eq. 14.2-3, the overbar denotes the logical complement of a variable.
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P, =XnX,nX| NnX,
Py,=XnX,NnX3nX,
Py =XnX,NnX5NX

P, =XnXsnX;NX,

(14.2-3b)
(14.2-3¢)
(14.2-3d)

(14.2-3e)

Bridge. Create a black pixel if creation results in connectivity of previously uncon-
nected neighboring black pixels.

where

and

G(j, k) = XU[P,UP,U - UP]

=X NXeN[X;UX,UX]N[X UX, UX;]1N Py
= XgNXyn[X, UX, UX;]N[XsUX,UX;]1 NPy
= XoNXeNX;N[X, UX;UX,]

=XonXoNX, N[X,UXsUX(]

Xo N Xy X3N[X)UXgU X

X;NnXeNXsN[X,UX,UX,]

=L UL,ULiUl,

=XnXonX,nX;NnX;NnX;nXsnXgN Xy
=XNnXoNnX NnXoNX;NnXyNnXsnXgn Xy
=XNnXgnX;NnX;NnX3nX;NnXsNXgN X,

XnXonX,nXonX3nX;nXsnXgn X,

(14.2-4a)

(14.2-4b)
(14.2-4c)
(14.2-4d)
(14.2-4¢)
(14.2-4f)

(14.2-4g)

(14.2-4h)
(14.2-4i)
(14.2-4j)
(14.2-4k)

(14.2-41)
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The following is one of 119 qualifying patterns

1 0 O

1 0 1

0O 0 1
A pattern such as

0 0 0

0 0 0

1 0 1

does not qualify because the two black pixels will be connected when they are
on the middle row of a subsequent observation window if they are indeed uncon-
nected.

Eight-Neighbor Dilate. Create a black pixel if at least one eight-connected neigh-
bor pixel is black.

G, k) = XuXyu-UX, (14.2-5)

This hit-or-miss definition of dilation is a special case of a generalized dilation
operator that is introduced in Section 14.4. The dilate operator can be applied recur-
sively. With each iteration, objects will grow by a single pixel width ring of exterior
pixels. Figure 14.2-2 shows dilation for one and for three iterations for a binary
image. In the example, the original pixels are recorded as black, the background pix-
els are white and the added pixels are midgray.

Fatten. Create a black pixel if at least one eight-connected neighbor pixel is black,
provided that creation does not result in a bridge between previously unconnected
black pixels in a 3 x 3 neighborhood.

The following is an example of an input pattern in which the center pixel would
be set black for the basic dilation operator, but not for the fatten operator.

—_— O
— o O
[ R

There are 132 such qualifying patterns. This stratagem will not prevent connection
of two objects separated by two rows or columns of white pixels. A solution to this
problem is considered in Section 14.3. Figure 14.2-3 provides an example of
fattening.
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(a) Original

(b) One iteration (c) Three iterations

FIGURE 14.2-2. Dilation of a binary image.

14.2.2. Subtractive Operators

Subtractive hit-or-miss morphological operators cause the center pixel of a 3 x3
window to be converted from black to white if its neighboring pixels meet predeter-
mined conditions. The basic subtractive operators are defined below.

Isolated Pixel Remove. Erase a black pixel with eight white neighbors.
G, k) = Xn[X,uX, U UX,] (14.2-6)

Spur Remove. Erase a black pixel with a single eight-connected neighbor.
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FIGURE 14.2-3. Fattening of a binary image.

The following is one of four qualifying patterns:

0 0 0
0 1 0
1 0 0

Interior Pixel Remove. Erase a black pixel if all four-connected neighbors are
black.

G(j, k) =XN [XO U Xz v )?4 U X6] (142-7)
There are 16 qualifying patterns.

H-Break. Erase a black pixel that is H-connected.
There are two qualifying patterns.

_— O ==
—_
—_— O =
—_
S = O
—_

Eight-Neighbor Erode. Erase a black pixel if at least one eight-connected neighbor
pixel is white.

G, k) =XnXyn-nNX, (14.2-8)
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(a) Original

(b) One iteration (c) Three iterations

FIGURE 14.2-4. Erosion of a binary image.

A generalized erosion operator is defined in Section 14.4. Recursive applica-
tion of the erosion operator will eventually erase all black pixels. Figure 14.2-4
shows results for one and three iterations of the erode operator. The eroded pix-
els are mid gray. It should be noted that after three iterations, the ring is totally
eroded.

14.2.3. Majority Black Operator

The following is the definition of the majority black operator:

Majority Black. Create a black pixel if five or more pixels in a 3 x3 window are
black; otherwise, set the output pixel to white.

The majority black operator is useful for filling small holes in objects and closing
short gaps in strokes. An example of its application to edge detection is given in
Chapter 15.
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14.3. BINARY IMAGE SHRINKING, THINNING, SKELETONIZING AND
THICKENING

Shrinking, thinning, skeletonizing and thickening are forms of conditional erosion in
which the erosion process is controlled to prevent total erasure and to ensure con-
nectivity.

14.3.1. Binary Image Shrinking

The following is a definition of shrinking:

Shrink. Erase black pixels such that an object without holes erodes to a single pixel
at or near its center of mass, and an object with holes erodes to a connected ring
lying midway between each hole and its nearest outer boundary.

A 3x3 pixel object will be shrunk to a single pixel at its center. A 2x2 pixel
object will be arbitrarily shrunk, by definition, to a single pixel at its lower right corner.

It is not possible to perform shrinking using a single-stage 3 x 3 pixel hit-or-
miss transform of the type described in the previous section. The 3 x3 window
does not provide enough information to prevent total erasure and to ensure con-
nectivity. A 5x5 hit-or-miss transform could provide sufficient information to
perform proper shrinking. But such an approach would result in excessive com-
putational complexity (i.e., 22 possible patterns to be examined!). References 15
and 16 describe two-stage shrinking and thinning algorithms that perform a con-
ditional marking of pixels for erasure in a first stage, and then examine neighbor-
ing marked pixels in a second stage to determine which ones can be
unconditionally erased without total erasure or loss of connectivity. The follow-
ing algorithm developed by Pratt and Kabir (17) is a pipeline processor version of
the conditional marking scheme.

In the algorithm, two concatenated 3 x 3 hit-or-miss transformations are per-
formed to obtain indirect information about pixel patterns within a 5x5 window.
Figure 14.3-1 is a flowchart for the look-up table implementation of this algorithm.
In the first stage, the states of nine neighboring pixels are gathered together by a
pixel stacker, and a following look-up table generates a conditional mark M for pos-
sible erasures. Table 14.3-1 lists all patterns, as indicated by the letter S in the table
column, which will be conditionally marked for erasure. In the second stage of the
algorithm, the center pixel X and the conditional marks in a 3 x 3 neighborhood cen-
tered about X are examined to create an output pixel. The shrinking operation can be
expressed logically as

GG, k) = XN [MUPM,M,, ..., M;)] (14.3-1)

where P(M, M, ..., M) is an erasure inhibiting logical variable, as defined in Table
14.3-2. The first four patterns of the table prevent strokes of single pixel width from
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FIGURE 14.3-1. Look-up table flowchart for binary conditional mark operations.

being totally erased. The remaining patterns inhibit erasure that would break object
connectivity. There are a total of 157 inhibiting patterns. This two-stage process
must be performed iteratively until there are no further erasures. As an example, the
2 x 2 square pixel object

results in the following intermediate array of conditional marks
M M
M M

The corner cluster pattern of Table 14.3-2 gives a hit only for the lower right corner
mark. The resulting output is
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TABLE 14.3-1. Shrink, Thin and Skeletonize Conditional Mark Patterns [M = 1 if hit]

Table Bond Pattern
000
S 1 10
001
00
S 2 10
10
00 000 OO0 OOO 00O
S 3 10 110 010 010 011
00 100 110 011 0O0T1
00
TK 4 11
10
00
STK 4 10
11
01
ST 5 11
10
00
ST 5 11
11
ST 6
10 100 000 OO0 OO1
STK 6 10 110 110 011 011
00 110 111 111 O11

(Continued)
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TABLE 14.3-1. (Continued)

Table Bond Pattern
rtr1 111 10 01

STK 7 011 110 1 1
oo1 100 111 111

(=)
—
—
—_
—
—
—_
—
(=)
(e}
(e}

STK 8§ 011 111 110

111 o011 111 111 111 110 100 O0O01
STK 9 011 011 111 111 110 110 111 111
or1 111 100 001 110 111 111 111

STk 10 011 111 110 111

Figure 14.3-2 shows an example of the shrinking of a binary image for four and
13 iterations of the algorithm. No further shrinking occurs for more than 13 itera-
tions. At this point, the shrinking operation has become idempotent (i.e., reapplica-
tion evokes no further change. This shrinking algorithm does not shrink the
symmetric original ring object to a ring that is also symmetric because of some of
the conditional mark patterns of Table 14.3-2, which are necessary to ensure that
objects of even dimension shrink to a single pixel. For the same reason, the shrunk
ring is not minimally connected.

14.3.2. Binary Image Thinning

The following is a definition of thinning:

Thin. Erase black pixels such that an object without holes erodes to a minimally
connected stroke located equidistant from its nearest outer boundaries, and an object
with holes erodes to a minimally connected ring midway between each hole and its
nearest outer boundary.
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TABLE 14.3-2. Shrink and Thin Unconditional Mark Patterns
[P(M, My, M1, M, M3, My, M5, Mg, M7) = 1 if hit] ¢

435

Pattern
Spur Single 4-connection
OooOM MOO 000 000
oMO0O OMO OMO OMM
000 000 OMO 00O
L Cluster
oomMm OMM MMO MOO 000 OO0 00O 00O
oMM OMO OMO MMO MMO OMO O0OMO OMM
000 000 OO0 OO0 MOO MMO OMM O0OO0M
4-Connected offset
0OMM MMO OMO OO0M
MMO OMM O0OMM O0MM
000 000 OOM 0MO
Spur corner cluster
0AM MBO O0O0M MOO
0OMB AMO AMO OMB
MOO OOM MBO O0AM
Corner cluster
MMD
MMD
DDD
Tee branch
bDmM0O OMD 00D DOO DMD OMO OMO DMD
MMM MMM MMM MMM MMO MMO O0MM 0MM
Doo oob OMD DMO O0OMO DMD DMD 0 MO
Vee branch
MDM MDC CBA ADM
DMD DMB DMD BMD
ABC MDA MDM CDM
Diagonal branch
DMO OMD DOM MOD
OMM MMO MMO O0MM
MOD DOM OMD DMO
‘AUBUC=1 D=0uUl AUB=1
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(a) Four iterations (b) Thirteen iterations

FIGURE 14.3-2. Shrinking of a binary image.

The following is an example of the thinning of a 3 x5 pixel object without holes

11 1 1 1 0O 0 0 0 O

1 1 1 1 1 0 1 1 1 0

1 1 1 1 1 0O 0 0 0 O
before after

A 2 x5 object is thinned as follows:

1 1 1 1 1 0 0

11 1 1 1 o 1 1 1 1
before after

Table 14.3-1 lists the conditional mark patterns, as indicated by the letter 7 in the
table column, for thinning by the conditional mark algorithm of Figure 14.3-1. The
shrink and thin unconditional patterns are identical, as shown in Table 14.3-2.

Figure 14.3-3 contains an example of the thinning of a binary image for four and
eight iterations. Figure 14.3-4 provides an example of the thinning of an image of a
printed circuit board in order to locate solder pads that have been deposited improp-
erly and that do not have holes for component leads. The pads with holes erode to a
minimally connected ring, while the pads without holes erode to a point.

Thinning can be applied to the background of an image containing several
objects as a means of separating the objects. Figure 14.3-5 provides an example of
the process. The original image appears in Figure 14.3-5a, and the background-
reversed image is Figure 14.3-5b. Figure 14.3-5¢ shows the effect of thinning the
background. The thinned strokes that separate the original objects are minimally
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(a) Four iterations (b) Eight iterations

FIGURE 14.3-3. Thinning of a binary image.

connected, and therefore the background of the separating strokes is eight-connected
throughout the image. This is an example of the connectivity ambiguity discussed in
Section 14.1. To resolve this ambiguity, a diagonal fill operation can be applied to
the thinned strokes. The result, shown in Figure 14.3-5d, is called the exothin of the
original image. The name derives from the exoskeleton, discussed in the following
section.

14.3.3. Binary Image Skeletonizing

A skeleton or stick figure representation of an object can be used to describe its
structure. Thinned objects sometimes have the appearance of a skeleton, but they are
not always uniquely defined. For example, in Figure 14.3-3, both the rectangle and
ellipse thin to a horizontal line.

(a) Original (b) Thinned
FIGURE 14.3-4. Thinning of a printed circuit board image.
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(a) Original (b) Background-reversed

(¢) Thinned background (d) Exothin
FIGURE 14.3-5. Exothinning of a binary image.

Blum (18) has introduced a skeletonizing technique called medial axis transfor-
mation that produces a unique skeleton for a given object. An intuitive explanation
of the medial axis transformation is based on the prairie fire analogy (19-22). Con-
sider the circle and rectangle regions of Figure 14.3-6 to be composed of dry grass
on a bare dirt background. If a fire were to be started simultaneously on the perime-
ter of the grass, the fire would proceed to burn toward the center of the regions until
all the grass was consumed. In the case of the circle, the fire would burn to the center
point of the circle, which is the guench point of the circle. For the rectangle, the fire
would proceed from each side. As the fire moved simultaneously from left and top,
the fire lines would meet and quench the fire. The quench points or quench lines of a
figure are called its medial axis skeleton. More generally, the medial axis skeleton
consists of the set of points that are equally distant from two closest points of an
object boundary. The minimal distance function is called the quench distance of
the object. From the medial axis skeleton of an object and its quench distance, it is
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FIGURE
BOUNDARY

FIRE LINE

MEDIAL AXIS
SKELETON

(a) Circle

,— FIGURE
BOUNDARY

|_—FIRE LINE

|_—MEDIAL AXIS
SKELETON

(b) Rectangle

FIGURE 14.3-6. Medial axis transforms.

possible to reconstruct the object boundary. The object boundary is determined by
the union of a set of circular disks formed by circumscribing a circle whose radius is
the quench distance at each point of the medial axis skeleton.

A reasonably close approximation to the medial axis skeleton can be implemented
by a slight variation of the conditional marking implementation shown in Figure 14.3-
1. In this approach, an image is iteratively eroded using conditional and unconditional
mark patterns until no further erosion occurs. The conditional mark patterns for skele-
tonization are listed in Table 14.3-1 under the table indicator K. Table 14.3-3 lists the
unconditional mark patterns. At the conclusion of the last iteration, it is necessary to
perform a single iteration of bridging as defined by Eq. 14.2-4 to restore connectivity,
which will be lost whenever the following pattern is encountered:

11111
11111

Inhibiting the following mark pattern created by the bit pattern above:

M M
MM

will prevent elliptically shaped objects from being improperly skeletonized.
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TABLE 14.3-3. Skeletonize Unconditional Mark Patterns
[P(M, Mg, My, M3, M3, M4, M5, Mg, M) = 1 if hit]*

Pattern

Spur

0 0 0 0 0 0 0 0 M M 0 0

0O M O 0o M M 0 0 M

0 0 M M 0 0 0 0 0 0 0 0
Single 4-connection

0 0 0 0 0 0 0 0 M

0O M O 0O M M M M 0 0o M O

0O M O 0 0 0 0 0 0 0 0 0
L corner

0O M O o M O 0 0 0 0 0 0

0o M M M M M M M M

0 0 0 0 0 0 0O M O 0O M O
Corner cluster

M M D D D D

M M D D M M

D D D D M M
Tee branch

D M D D M D D D D D M D

M M M M M D M M M D M M

D D D D M D D M D D M D
Vee branch

M D M M D C cC B A A D M

D M D D M B D D B M D

A B C M D A M D M cC D M
Diagonal branch

D M 0 0O M D D 0o M M 0 D

0o M M M M 0 M M 0 0o M M

M 0 D D 0 M 0O M D D M 0

‘AUBuC=1 D=0uUl.
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(a) Four iterations

(b) Ten iterations

FIGURE 14.3-7. Skeletonizing of a binary image.

Figure 14.3-7 shows an example of the skeletonization of a binary image. The
eroded pixels are mid gray. It should be observed that skeletonizing gives different
results than thinning for many objects. Prewitt (23, p.136) has coined the term
exoskeleton for the skeleton of the background of an object in a scene. The exoskel-
eton partitions each objects from neighboring object, as does the thinning of the
background.

14.3.4. Binary Image Thickening

In Section 14.2.1, the fatten operator was introduced as a means of dilating objects
such that objects separated by a single pixel stroke would not be fused. But the fatten
operator does not prevent fusion of objects separated by a double width white stroke.
This problem can be solved by iteratively thinning the background of an image, and
then performing a diagonal fill operation. This process, called thickening, when
taken to its idempotent limit, forms the exothin of the image, as discussed in Section
14.3.2. Figure 14.3-8 provides an example of thickening. The exothin operation is
repeated three times on the background reversed version of the original image. Fig-
ure 14.3-8b shows the final result obtained by reversing the background of the
exothinned image.
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The binary thinning and skeletonizing methods presented in this section are
based upon the conditional erosion concept. They are well suited for implementation
on a pipeline processor because they can be computed by scanning an image with a
3 x 3 pixel processing window (17). A drawback of the methods is that the pro-
cessed images are not always minimally connected. Also, the thinned or skeleton-
ized images are sometimes asymmetric even when the source image is symmetric.
Chapter 18 presents some algorithms, which are based upon contour following of
binary objects. These algorithms often avoid the problems associated with condi-
tional erosion methods.

(a) Original (b) Thickened

FIGURE 14.3-8. Thickening of a binary image.

14.4. BINARY IMAGE GENERALIZED DILATION AND EROSION

Dilation and erosion, as defined earlier in terms of hit-or-miss transformations, are
limited to object modification by a single ring of boundary pixels during each itera-
tion of the process. The operations can be generalized.

Before proceeding further, it is necessary to introduce some fundamental con-
cepts of image set algebra that are the basis for defining the generalized dilation and
erosions operators. Consider a binary-valued source image function F(j, k) . A pixel
at coordinate (j, k) is a member of F(j, k), as indicated by the symbol e, if and
only if it is a logical 1. A binary-valued image B(j, k) is a subset of a binary-valued
image A(j, k) , as indicated by B(j, k) c A(j, k) , if for every spatial occurrence of a
logical 1 of A(j, k), B(j, k) is alogical 1. The complement F(j, k) of F(j, k) isa
binary-valued image whose pixels are in the opposite logical state of those in
F(j, k) . Figure 14.4-1 shows an example of the complement process and other
image set algebraic operations on a pair of binary images. A reflected image F(j, k)
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is an image that has been flipped from left to right and from top to bottom. Figure
14.4-2 provides an example of image complementation. Translation of an image, as

indicated by the function

G(j.k) = T, AF(j,k)}

(14.4-1)

consists of spatially offsetting F(j, k) with respect to itself by r rows and ¢ col-
umns, where —~R<r<R and -C<c¢<C. Figure 14.4-2 presents an example of the
translation of a binary image.

o O o O © O
o O o O o o
—
wl

o o o o o o
-y
-
-

union
OR

o O O O o ©

o o o o o o

o O O O o o

0 00OOOTP O
0 00OTO0OO
011110
011110
0000 O0OT O
00 0O0OTP
B
0 00OOTD O
0 0O0OTUDOOWO
001100
001100
00 0O0OT O
0 00 00O
AnB

intersection
AND

—_ =

o o o o o o

- O O O O =

complement

0
1
0
0
1

o O =+ = 0O O

0

AXORB

exclusive-OR

A

- O O O O =

0
1
0
0
1

0

XOR

o O =+ = 0O O

FIGURE 14.4-1. Image set algebraic operations on binary arrays.

14.4.1. Generalized Dilation

Generalized dilation is expressed symbolically as

G(j, k) = F(j, k) ® H(j, k)

o O o o o o

(14.4-2)
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where F(j, k) for 1<j, k<N isabinary-valued image and H(j, k) for 1<j, k<L,
where L is an odd integer, is a binary-valued array called a structuring element. For
notational simplicity, F(j, k) and H(j, k) are assumed to be square arrays. General-
ized dilation can be defined mathematically and implemented in several ways. The
Minkowski addition definition (1) is

GG k) = QUT, AF(, b} (14.4-3)
— T ©Y
(r,c)e H
00 0O0OUOO OO 0 00OOUOCOTG O 00 O0OOOOTP O
00 0O0OUO OO OO 00 0O0O 00 0O 0O0OUOOOTGO
00100O0OO0TU O 00011100 0 0O0OOTODODOTG O
001 0O0O0O0ODO 00O0O0O0OT11TOO 0 00O0OT1TO0OOUO
001 0O0O0O0OTO 0 0O0O0OOCTOOD 0 00O0OT1TO0OUOTP OO
00111000 000O0O0CTOO 0 00OT11TO0OTU
00 00 0O0UO0 000O0OOOOO oo0oo001T1 10
0O 0O0OOT OO OO O 0 0O0O0OOOO OO 00 O0O0OOOO OO
Original Reflection Translation
F(j. k) Fi. k) T12{F(i. k)}

FIGURE 14.4-2. Reflection and translation of a binary array.

It states that G(j, k) is formed by the union of all translates of F(j, k) with respect
to itself in which the translation distance is the row and column index of pixels of
H(j, k) that is a logical 1. Figure 14.4-3 illustrates the concept. Equation 14.4-3
results in an M x M output array G(j, k) that is justified with the upper left corner
of the input array F(j, k) . The output array is of dimension M =N + L — 1, where L
is the size of the structuring element. In order to register the input and output images
properly, F(j, k) should be translated diagonally right by QO = (L-1)/2 pixels.
Figure 14.4-3 shows the exclusive-OR difference between G(j, k) and the translate
of F(j, k) . This operation identifies those pixels that have been added as a result of
generalized dilation.

An alternative definition of generalized dilation is based on the scanning and pro-
cessing of F(j, k) by the structuring element H(j, k) . With this approach, general-
ized dilation is formulated as (17)

GG, k) = UUFm,n) "H(Gj—m+1,k—n+1) (14.4-4)

m
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co0oo000 110
o01o00 110
01100 100
00110
000O0O
Flj k) H{j. k)
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FIGURE 14.4-3. Generalized dilation computed by Minkowski addition.
With reference to Eq. 7.1-7, the spatial limits of the union combination are
MAX{1,j—L+1}<m<MIN{N,j} (14.4-5a)

MAX{1,k—L+1}<n<MIN{N, k} (14.4-5b)
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Equation 14.4-4 provides an output array that is justified with the upper left corner
of the input array. In image processing systems, it is often convenient to center the
input and output images and to limit their size to the same overall dimension. This
can be accomplished easily by modifying Eq. 14.4-4 to the form

G(j, k) = UUFmn)nH({-m+S,k—n+S5) (14.4-6)

where S = (L-1)/2 and, from Eq. 7.1-10, the limits of the union combination are

MAX{Ll,j-Q}< m <MIN{N,j+Q} (14.4-7a)

MAX{1,k—Q}< n <MIN{N, k+ Q} (14.4-7b)

where QO = (L-1)/2. Equation 14.4-6 applies for S<j,k<N-Q and G(j,k) =0
elsewhere. The Minkowski addition definition of generalized erosion given in
Eq. 14.4-2 can be modified to provide a centered result by taking the translations
about the center of the structuring element. In the following discussion, only the
centered definitions of generalized dilation will be utilized. In the special case for
which L = 3, Eq. 14.4-6 can be expressed explicitly as

(G(j, k) =
[HB3,3)NF(j-1,k-D]JU[HGB,2)NF(j-1L,k)]UI[HGB, 1)nF(j-1,K+1)]
UIH2,3)NF(j,k—-1)]U[H2,2)NF(j,k)]U[H2,1)NF(j,k+1)]
UIH(L3)NFG+ L k-D]JU[H(L2)NF(j+1L,0]U[H(L,1)NFG+1,k+1)]

(14.4-8)

If H(j,k) =1 for 1<j,k<3, then G(j, k), as computed by Eq. 14.4-8, gives the
same result as hit-or-miss dilation, as defined by Eq. 14.2-5.

It is interesting to compare Eqs. 14.4-6 and 14.4-8, which define generalized
dilation, and Eqs. 7.1-14 and 7.1-15, which define convolution. In the generalized
dilation equation, the union operations are analogous to the summation operations of
convolution, while the intersection operation is analogous to point-by-point
multiplication. As with convolution, dilation can be conceived as the scanning and
processing of F(j, k) by H(j, k) rotated by 180°.
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14.4.2. Generalized Erosion

Generalized erosion is expressed symbolically as

G(j, k) = F(j,k)© H(j, k) (14.4-9)

where again H(j, k) is an odd size L x L structuring element. Serra (3) has adopted,
as his definition for erosion, the dual relationship of Minkowski addition given by
Eq. 14.4-1, which was introduced by Hadwiger (24). By this formulation, general-
ized erosion is defined to be

G k) = MNNMT, AFG. k)} (14.4-10)
S
(r,c)e H

The meaning of this relation is that erosion of F(j, k) by H(j, k) is the intersection
of all translates of F(j, k) in which the translation distance is the row and column
index of pixels of H(j, k) that are in the logical one state. Steinberg et al. (6,25)
have adopted the subtly different formulation

GG, k) = MM, AFG. K} (14.4-11)
—_—

(r,c) e H

introduced by Matheron (2), in which the translates of F(j, k) are governed by the
reflection fl( J, k) of the structuring element rather than by H(j, k) itself.

Using the Steinberg definition, G(j, k) is a logical 1 if and only if the logical
ones of H(j, k) form a subset of the spatially corresponding pattern of the logical
ones of F(j, k) as H(j, k) is scanned over F(j, k) . It should be noted that the log-
ical zeros of H(j, k) do not have to match the logical zeros of F(j, k) . With the
Serra definition, the statements above hold when F(j, k) is scanned and processed
by the reflection of the structuring element. Figure 14.4-4 presents a comparison of
the erosion results for the two definitions of erosion. Clearly, the results are incon-
sistent.

Pratt (26) has proposed a relation, which is the dual to the generalized dilation
expression of Eq. 14.4-6, as a definition of generalized erosion. By this formulation,
generalized erosion in centered form is

G(j, k) = N"OF(m,n) UHG—m+ S, k—n+15) (14.4-12)
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where S = (L-1)/2, and the limits of the intersection combination are given by Eq.
14.4-7. In the special case for which L = 3, Eq. 14.4-12 becomes

GG, k) =
[H(3,3) UF(j-Lk-DIN[HG,2) UF(j-LKIN[HG, D) UF(j-1k+1)]
UIH2,3) UF(j,k=DIN[H2,2) U F(j, )1 N[H2,1) U F(j, k+1)]

m[ﬁ(l,3)uF(j+ 1,k—1)]ﬁ[ﬁ(l,2)uF(j+ LOIN[H(L1D)UF(j+1,k+1)]
(14.4-13

Sternberg definition of generalized erosion:

11 1 1 1

11111 111 000
1100081 00=110
199 11 414 000
111 1 1

F(j. k) H(j. k) Gi. k)

Serra definition of generalized erosion:

11111
11111 111 000
110001 00=000
11111 111 000
911 1 9

Fli k) H(j. k) G(j k)

FIGURE 14.4-4. Comparison of erosion results for two definitions of generalized erosion.

If HG,k) =1 for 1<j,k<3, Eq. 14.4-13 gives the same result as hit-or-miss
eight-neighbor erosion as defined by Eq. 14.2-8. Pratt's definition is the same as the
Serra definition. However, Eq. 14.4-12 can easily be modified by substituting the
reflection H(j, k) for H(j, k) to provide equivalency with the Steinberg definition.
Unfortunately, the literature utilizes both definitions, which can lead to confusion.
The definition adopted in this book is that of Hadwiger, Serra and Pratt, because the
defining relationships (Eq. 14.4-1 or 14.4-12) are duals to their counterparts for gen-
eralized dilation (Eq. 14.4-3 or 14.4-6).
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FIGURE 14.4-5. Generalized dilation and erosion for a 5 X 5 structuring element.

Figure 14.4-5 shows examples of generalized dilation and erosion for a symmet-
ric 5 x5 structuring element.

14.4.3. Properties of Generalized Dilation and Erosion

Consideration is now given to several mathematical properties of generalized dila-
tion and erosion. Proofs of these properties are found in Reference 25. For nota-
tional simplicity, in this subsection, the spatial coordinates of a set are dropped, i.e.,
A(J, k) = A.
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Dilation is commutative:
A®B =BO®A (14.4-14a)
But in general, erosion is not commutative:
AOB#BOA (14.4-14b)

Dilation and erosion are increasing operations in the sense that if A ¢ B, then

A®CcB®C (14.4-15a)

AoCcBocC (14.4-15b)

Dilation and erosion are opposite in effect; dilation of the background of an object
behaves like erosion of the object. This statement can be quantified by the duality
relationship

A©OB =A®B (14.4-106)

For the Steinberg definition of erosion, B on the right-hand side of Eq. 14.4-16
should be replaced by its reflection B. Figure 14.4-6 contains an example of the
duality relationship.

The dilation and erosion of the intersection and union of sets obey the following
relations:

[ANB]|®@Cc[A®CIN[B® (] (14.4-17a)
[ANnB]O©C =[ASCINn[BOC(C] (14.4-17b)
[AUB]|®C =[A®@ClU[B®(C] (14.4-17c)

[AUB]©Co[A©Clu[BOC(C] (14.4-17d)
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FIGURE 14.4-6. Duality relationship between dilation and erosion.

The dilation and erosion of a set by the intersection of two other sets satisfy these
containment relations:

A@BACICIA®BIN[A®C] (14.4-18a)
AO[BACI2[AOBIUIAOC] (14.4-18b)

On the other hand, dilation and erosion of a set by the union of a pair of sets are gov-
erned by the equality relations

A@[BUC] =[A®@BJU[A®C] (14.4-19a)
AQ[BuC] =[A©BJU[AOC(] (14.4-19b)
The following chain rules hold for dilation and erosion.
A®BO®Cl=[A®B|®C (14.4-20a)
AO[B®C] =[AOB]OC (14.4-20b)

14.4.4. Structuring Element Decomposition

Equation 14.4-20 is important because it indicates that if a L x L structuring element
can be expressed as

H(jk) = K\(j, ) ® - ® K, (j, k) ® - ® K (), k) (14.4-21)

where K (j,k) is a small structuring element, it is possible to perform dilation and
erosion by operating on an image sequentially. In Eq. 14.4-21, if the small structuring
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FIGURE 14.4-7. Structuring element decomposition.

elements K,(j.k) are all 3x3 arrays, then Q = (L-1)/2. Figure 14.4-7 gives sev-
eral examples of small structuring element (SSE) decomposition. Sequential small
structuring element dilation and erosion is analogous to small generating kernel
(SGK) convolution as given by Eq. 9.6-1. Not every large impulse response array
can be decomposed exactly into a sequence of SGK convolutions; similarly, not
every large structuring element can be decomposed into a sequence of SSE dilations
or erosions. The following ring

L
_ o O O =
— o o O =
_ o O O =
P —
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is an example of a 5x 35 structuring element that cannot be decomposed into the
sequential dilation of two 3 x3 SSEs.

Zhuang and Haralick (26) have developed a tree search method to find a SSE
decomposition into 1x2 and 2 x1 elements. Xu (27) has proved that all convex
polygonal structuring elements, without holes, are decomposable into SSEs. He has
developed chain code (see Section 17.6) decomposition algorithms for such struc-
turing elements. Park and Chin (28) have developed a SSE decomposition algorithm
for convex or concave structuring elements, which are simply connected, i.e. they
are 8-connected, and contain no holes. The resulting SSEs are also simply con-
nected. Hashimoto and Barrera (29) have demonstrated that simply connected struc-
turing elements can be decomposed into SSEs that are not necessarily simply
connected. Sussner and Ritter (30) have investigated a class of decomposition algo-
rithms in which the structuring element is treated as a matrix of certain rank. Using
image algebra concepts, they have developed a rank-based heuristic decomposition
algorithm.

For two-dimensional convolution, it is possible to decompose any large impulse
response array into a set of sequential SGKs that are computed in parallel and
summed together using the singular-value decomposition/small generating kernel
(SVD/SGK) algorithm, as illustrated by the flow chart of Figure 9.6-2. It is logical
to conjecture as to whether an analog to the SVD/SGK algorithm exists for dilation
and erosion. Equation 14.4-19 suggests that such an algorithm may exist. Any non-
convex structuring element can be decimated into a union of a number N of convex
structuring elements as

H=H UH,U..UH)y (14.4-22)
where each H, is the same size as H. Then, each H, can be decomposed. Figure
14.4-8 illustrates an SSE decomposition of the 5x 5 ring example based on Egs.

14.4-19a and 14.4-21. Unfortunately, no systematic method has yet been found to
decompose an arbitrarily large structuring element.

14.5. BINARY IMAGE CLOSE AND OPEN OPERATIONS

Dilation and erosion are often applied to an image in concatenation. Dilation fol-
lowed by erosion is called a close operation. It is expressed symbolically as

G(Jj, k) = F(j, k) H(j, k) (14.5-1a)

where H(j, k) is a Lx L structuring element. In accordance with the Serra formula-
tion of erosion, the close operation is defined as

G(j, k) = [F(j, k) ® H(j, k)1 © H(j, k) (14.5-1b)
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FIGURE 14.4-8. Small structuring element decomposition of a 5 X 5 pixel ring.

where it should be noted that erosion is performed with the reflection of the structur-
ing element. Closing of an image with a compact structuring element without holes
(zeros), such as a square or circle, smooths contours of objects, eliminates small
holes in objects and fuses short gaps between objects.

An open operation, expressed symbolically as

G(j, k) = F(j, k) ©H(j, k) (14.5-2a)
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consists of erosion followed by dilation. It is defined as

G(j, k) = [F(j,k)© H(j, k)] ® H(j, k) (14.5-2b)

where again, the erosion is with the reflection of the structuring element. Opening of
an image smooths contours of objects, eliminates small objects and breaks narrow
strokes.

The close operation tends to increase the spatial extent of an object, while the
open operation decreases its spatial extent. In quantitative terms

F(j,k)yeH(j k)2 F(j,k) (14.5-3a)

F(j, k) © H(j, k) S F(j, k) (14.5-3b)

It can be shown that the close and open operations are stable in the sense that (25)

[F(j, k) e H(j, k)] & H(j, k) = F(j, k) ® H(j, k) (14.5-4a)

LF(j, k) < H(j, k)] © H(j, k) = F(j, k) ©H(j, k) (14.5-4b)

Also, it can be easily shown that the open and close operations satisfy the following
duality relationship:

F(j, k)ye H(j, k) = F(j, k) © H(j, k) (14.5-5)

Figure 14.5-1 presents examples of the close and open operations on a binary
image.

14.6. GRAY SCALE IMAGE MORPHOLOGICAL OPERATIONS

Morphological concepts can be extended to gray scale images, but the extension
often leads to theoretical issues and to implementation complexities. When applied
to a binary image, dilation and erosion operations cause an image to increase or
decrease in spatial extent, respectively. To generalize these concepts to a gray scale
image, it is assumed that the image contains visually distinct gray scale objects set
against a gray background. Also, it is assumed that the objects and background
are both relatively spatially smooth. Under these conditions, it is reasonable to



456 MORPHOLOGICAL IMAGE PROCESSING

(a) Original

(b) Close (c) Overlay of original and close

(d) Open (e) Overlay of original and open

FIGURE 14.5-1. Close and open operations on a binary image.
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ask: Why not just threshold the image and perform binary image morphology?
The reason for not taking this approach is that the thresholding operation often
introduces significant error in segmenting objects from the background. This is
especially true when the gray scale image contains shading caused by nonuni-
form scene illumination.

14.6.1. Gray Scale Image Dilation and Erosion

Dilation or erosion of an image could, in principle, be accomplished by hit-or-miss
transformations in which the quantized gray scale patterns are examined in a 3 x3
window and an output pixel is generated for each pattern. This approach is, however,
not computationally feasible. For example, if a look-up table implementation were
to be used, the table would require 272 entries for 256-level quantization of each
pixel! The common alternative is to use gray scale extremum operations over a 3 x 3
pixel neighborhoods.

Consider a gray scale image F(j, k) quantized to an arbitrary number of gray
levels. According to the extremum method of gray scale image dilation, the dilation
operation is defined as

G(j, k) = MAX{F(j, k), FG,k+ 1), FG—1,k+1), ....,F(j+1,k+1)} (14.6-1)

where MAX{S,, ..., Sy} generates the largest-amplitude pixel of the nine pixels in
the neighborhood. If F(j, k) is quantized to only two levels, Eq. 14.6-1 provides the
same result as that using binary image dilation as defined by Eq. 14.2-5.

By the extremum method, gray scale image erosion is defined as

G(j, k) = MIN{F(j, k), F(, k+ 1), FG— 1, k+1), .., FG + 1, k+ 1)} (14.6-2)

where MIN{S,, ..., Sy} generates the smallest-amplitude pixel of the nine pixels in
the 3 x 3 pixel neighborhood. If F(j, k) is binary-valued, then Eq. 14.6-2 gives the
same result as hit-or-miss erosion as defined in Eq. 14.2-8.

In Chapter 10, when discussing the pseudomedian, it was shown that the MAX
and MIN operations can be computed sequentially. As a consequence, Eqs. 14.6-1
and 14.6-2 can be applied iteratively to an image. For example, three iterations gives
the same result as a single iteration using a 7 x7 moving-window MAX or MIN
operator. By selectively excluding some of the terms S, ..., S, of Eq. 14.6-1 or
14.6-2 during each iteration, it is possible to synthesize large nonsquare gray scale
structuring elements in the same manner as illustrated in Figure 14.4-7 for binary
structuring elements. However, no systematic decomposition procedure has yet been
developed.
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(a) Original

PCB profile dilation profile 1 iteration

(b) Original profile (c) One iteration

dilation profile 2 iterations dilation profile 3 iterations

(d) Two iterations (e) Three iterations

FIGURE 14.6-1. One-dimensional gray scale image dilation on a printed circuit board image.

Figures 14.6-1 and 14.6-2 show the amplitude profile of a row of a gray scale image
of a printed circuit board (PCB) after several dilation and erosion iterations. The row
selected is indicated by the white horizontal line in Figure 14.6-la. In Figure 14.6-2,
two-dimensional gray scale dilation and erosion are performed on the PCB image.
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erosion profile 1 iteration

(a) One iteration

erosion profile 2 iterations

(b) Two iterations (c) Three iterations

~_erosion profile 3 iterations

FIGURE 14.6-2. One-dimensional gray scale image erosion on a printed circuit board
image.

14.6.2. Gray Scale Image Close and Open Operators

The close and open operations introduced in Section 14.5 for binary images can eas-
ily be extended to gray scale images. Gray scale closing is realized by first perform-
ing gray scale dilation with a gray scale structuring element, then gray scale erosion
with the same structuring element. Similarly, gray scale opening is accomplished by
gray scale erosion followed by gray scale dilation. Figure 14.6-3 gives examples of
gray scale image closing and opening.

Steinberg (28) has introduced the use of three-dimensional structuring elements
for gray scale image closing and opening operations. Although the concept is well
defined mathematically, it is simpler to describe in terms of a structural image
model. Consider a gray scale image to be modeled as an array of closely packed
square pegs, each of which is proportional in height to the amplitude of a corre-
sponding pixel. Then a three-dimensional structuring element, for example a sphere,
is placed over each peg. The bottom of the structuring element, as it is translated over
the peg array, forms another spatially discrete surface, which is the close array of the
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(a) Original

(b) Dilation (c) Erosion

(d) Close (e) Open

FIGURE 14.6-3. Two-dimensional gray scale image dilation, erosion, close and open on a
printed circuit board image.
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original image. A spherical structuring element will touch pegs at peaks of the orig-
inal peg array, but will not touch pegs at the bottom of steep valleys. Consequently,
the close surface “fills in” dark spots in the original image.The opening of a gray
scale image can be conceptualized in a similar manner. An original image is mod-
eled as a peg array in which the height of each peg is inversely proportional to the
amplitude of each corresponding pixel (i.e., the gray scale is subtractively inverted).
The translated structuring element then forms the open surface of the original image.
For a spherical structuring element, bright spots in the original image are made
darker.

14.6.3. Conditional Gray Scale Image Morphological Operators

There have been attempts to develop morphological operators for gray scale images
that are analogous to binary image shrinking, thinning, skeletonizing and thicken-
ing. The stumbling block to these extensions is the lack of a definition for connectiv-
ity of neighboring gray scale pixels. Serra (4) has proposed approaches based on
topographic mapping techniques. Another approach is to iteratively perform the
basic dilation and erosion operations on a gray scale image and then use a binary
thresholded version of the resultant image to determine connectivity at each
iteration.
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EDGE DETECTION

Changes or discontinuities in an image amplitude attribute such as luminance or tri-
stimulus value are fundamentally important primitive characteristics of an image
because they often provide an indication of the physical extent of objects within the
image. Local discontinuities in image luminance from one level to another are called
luminance edges. Global luminance discontinuities, called luminance boundary seg-
ments, are considered in Section 17.4. In this chapter, the definition of a luminance
edge is limited to image amplitude discontinuities between reasonably smooth
regions. Discontinuity detection between textured regions is considered in Section
17.5. This chapter also considers edge detection in color images, as well as the
detection of lines and spots within an image.

15.1. EDGE, LINE AND SPOT MODELS

Figure 15.1-1a is a sketch of a continuous domain, one-dimensional ramp edge
modeled as a ramp increase in image amplitude from a low to a high level, or vice
versa. The edge is characterized by its height, slope angle and horizontal coordinate
of the slope midpoint. An edge exists if the edge height is greater than a specified
value. An ideal edge detector should produce an edge indication localized to a single
pixel located at the midpoint of the slope. If the slope angle of Figure 15.1-1a is 90°,
the resultant edge is called a step edge, as shown in Figure 15.1-1b. In a digital
imaging system, step edges usually exist only for artificially generated images such
as test patterns and bilevel graphics data. Digital images, resulting from digitization

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
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FIGURE 15.1-1. One-dimensional, continuous domain edge and line models.

of optical images of real scenes, generally do not possess step edges because the anti-
aliasing low-pass filtering prior to digitization reduces the edge slope in the digital
image caused by any sudden luminance change in the scene. The one-dimensional
profile of a line is shown in Figure 15.1-1c. In the limit, as the line width w
approaches zero, the resultant amplitude discontinuity is called a roof edge.

Continuous domain, two-dimensional models of edges and lines assume that the
amplitude discontinuity remains constant in a small neighborhood orthogonal to the
edge or line profile. Figure 15.1-2a is a sketch of a two-dimensional edge. In addi-
tion to the edge parameters of a one-dimensional edge, the orientation of the edge
slope with respect to a reference axis is also important. Figure 15.1-2b defines the
edge orientation nomenclature for edges of an octagonally shaped object whose
amplitude is higher than its background.
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FIGURE 15.1-2. Two-dimensional, continuous domain edge model.

Figure 15.1-3 contains step and unit width ramp edge models in the discrete
domain. The vertical ramp edge model in the figure contains a single transition pixel
whose amplitude is at the midvalue of its neighbors. This edge model can be obtained
by performing a 2x2 pixel moving window average on the vertical step edge
model. The figure also contains two versions of a diagonal ramp edge. The single-
pixel transition model contains a single midvalue transition pixel between the
regions of high and low amplitude; the smoothed transition model is generated by a
2 x 2 pixel moving window average of the diagonal step edge model. Figure 15.1-3
also presents models for a discrete step and ramp corner edge. The edge location for
discrete step edges is usually marked at the higher-amplitude side of an edge transi-
tion. For the single-pixel transition model and the smoothed transition vertical and
corner edge models, the proper edge location is at the transition pixel. The smoothed
transition diagonal ramp edge model has a pair of adjacent pixels in its transition
zone. The edge is usually marked at the higher-amplitude pixel of the pair. In Figure
15.1-3, the edge pixels are italicized.
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FIGURE 15.1-3. Two-dimensional, discrete domain edge models.

Discrete two-dimensional single-pixel line models are presented in Figure 15.1-4
for step lines and unit width ramp lines. The single-pixel transition model has a mid-
value transition pixel inserted between the high value of the line plateau and the low-
value background. The smoothed transition model is obtained by performing a 2 x 2
pixel moving window average on the step line model.

A spot, which can only be defined in two dimensions, consists of a plateau of
high amplitude against a lower amplitude background, or vice versa. Figure 15.1-5
presents single-pixel spot models in the discrete domain.

There are two generic approaches to the detection of edges, lines and spots in a
luminance image: differential detection and model fitting. With the differential detec-
tion approach, as illustrated in Figure 15.1-6, spatial processing is performed on an
original image F(j, k) to produce a differential image G(j, k) with accentuated spa-
tial amplitude changes. Next, a differential detection operation is executed to deter-
mine the pixel locations of significant differentials. The second general approach to
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FIGURE 15.1-4. Two-dimensional, discrete domain line models.

edge, line or spot detection involves fitting of a local region of pixel values to a
model of the edge, line or spot, as represented in Figures 15.1-1 to 15.1-5. If the fit is
sufficiently close, an edge, line or spot is said to exist, and its assigned parameters are
those of the appropriate model. A binary indicator map E(j, k) is often generated to
indicate the position of edges, lines or spots within an image.

Typically, edge, line and spot locations are specified by black pixels against a
white background.

There are two major classes of differential edge detection: first- and second-order
derivative. For the first-order class, some form of spatial first-order differentiation is
performed, and the resulting edge gradient is compared to a threshold value. An
edge is judged present if the gradient exceeds the threshold. For the second-order
derivative class of differential edge detection, an edge is judged present if there is a
significant spatial change in the polarity of the second derivative.
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FIGURE 15.1-5. Two-dimensional, discrete domain single pixel spot models.

FIGURE 15.1-6. Differential edge, line and spot detection.
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Sections 15.2 and 15.3 discuss the first- and second-order derivative forms of
edge detection, respectively. Edge fitting methods of edge detection are considered
in Section 15.4.

15.2. FIRST-ORDER DERIVATIVE EDGE DETECTION

There are two fundamental methods for generating first-order derivative edge gradi-
ents. One method involves generation of gradients in two orthogonal directions in an
image; the second utilizes a set of directional derivatives.

15.2.1. Orthogonal Gradient Generation

An edge in a continuous domain edge segment F(x, y), such as the one depicted in
Figure 15.1-2a, can be detected by forming the continuous one-dimensional gradi-
ent G(x,y) along a line normal to the edge slope, which is at an angle 6 with respect
to the horizontal axis. If the gradient is sufficiently large (i.e., above some threshold
value), an edge is deemed present. The gradient along the line normal to the edge
slope can be computed in terms of the derivatives along orthogonal axes according
to the following (1, p. 106)

G(x,y) = % cos 0 + E)F(a;y,y) sin 6 (15.2-1)

Figure 15.2-1 describes the generation of an edge gradient G(x,y) in the discrete
domain' in terms of a row gradient Gg(j, k) and a column gradient G(j, k) . The
spatial gradient amplitude is given by

G(.K) = [[Gr0. 1P +[G (. 0121 (15.2-2)

FIGURE 15.2-1. Orthogonal gradient generation.

1. The array nomenclature employed in this chapter places the origin in the upper left corner of the
array with j increasing horizontally and k increasing vertically.
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For computational efficiency, the gradient amplitude is sometimes approximated by
the magnitude combination

GG k) = |Ggl, K| + |G k) (15.2-3)

The orientation of the spatial gradient with respect to the row axis is

(15.2-4)

0(j, k) = arctan {GCU' k)}

GR(j? k)

The remaining issue for discrete domain orthogonal gradient generation is to choose
a good discrete approximation to the continuous differentials of Eq. 15.2-1.

Small Neighborhood Gradient Operators. The simplest method of discrete gradi-
ent generation is to form the running difference of pixels along rows and columns of
the image. The row gradient is defined as

Gplj k) = F(j, k)= F(j—1,k) (15.2-5a)

and the column gradient is?

Geljo k) = F(j, k)= F(j,k+1) (15.2-5b)

As an example of the response of a pixel difference edge detector, the following
is the row gradient along the center row of the vertical step edge model of Figure
15.1-3:

0 000ROOOO

In this sequence, & = b — a is the step edge height. The row gradient for the vertical
ramp edge model is

000022000
22

2. These definitions of row and column gradients, and subsequent extensions, are chosen such that
Gpand G are positive for an edge that increases in amplitude from left to right and from bottom to
top in an image.
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For ramp edges, the running difference edge detector cannot localize the edge to a
single pixel. Figure 15.2-2 provides examples of horizontal and vertical differencing
gradients of the monochrome peppers image. In this and subsequent gradient display
photographs, the gradient range has been scaled over the full contrast range of the
photograph. It is visually apparent from the photograph that the running difference
technique is highly susceptible to small fluctuations in image luminance and that the
object boundaries are not well delineated.

(a) Original

(b) Horizontal magnitude (c) Vertical magnitude

FIGURE 15.2-2. Horizontal and vertical differencing gradients of the peppers_mon image.

Diagonal edge gradients can be obtained by forming running differences of diag-
onal pairs of pixels. This is the basis of the Roberts (2) cross-difference operator,
which is defined in magnitude form as

GG.k) = |GG k)| +|G, (. k)| (15.2-6a)
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and in square-root form as

G(j,k) = [1G,(, 1P+ 1[Gy 11 (15.2-6b)

where
G(j, k) = F(j,k)-F(j—1,k+1) (15.2-6¢)
G,(jok) = F(, k)= F(j+1,k+1) (15.2-6d)

The edge orientation with respect to the row axis is

LT G,(J, k)
0(j, k) = 4_1+ arctan{Gl(L k)} (15.2-7)

Figure 15.2-3 presents the edge gradients of the peppers image for the Roberts oper-
ators. Visually, the objects in the image appear to be slightly better distinguished
with the Roberts square-root gradient than with the magnitude gradient. In Section
15.5, a quantitative evaluation of edge detectors confirms the superiority of the
square-root combination technique.

The pixel difference method of gradient generation can be modified to localize
the edge center of the ramp edge model of Figure 15.1-3 by forming the pixel differ-
ence separated by a null value. The row and column gradients then become

Gp(j. k) = F(j+ 1, k)=F(j-1,k) (15.2-8a)
Go(j, k) = F(j,k=1)-F(j,k+1) (15.2-8b)
(a) Magnitude (b) Square root

FIGURE 15.2-3. Roberts gradients of the peppers_mon image.
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FIGURE 15.2-4. Numbering convention for 3 X 3 edge detection operators.

The row gradient response for a vertical ramp edge model is then

Although the ramp edge is properly localized, the separated pixel difference gradi-
ent generation method remains highly sensitive to small luminance fluctuations in
the image. This problem can be alleviated by using two-dimensional gradient forma-
tion operators that perform differentiation in one coordinate direction and spatial
averaging in the orthogonal direction simultaneously.

Prewitt (1, p. 108) has introduced a 3 x 3 pixel edge gradient operator described
by the pixel numbering convention of Figure 15.2-4. The Prewitt operator square
root edge gradient is defined as

1/2
G k) = [[GRG T + GG, )17 (15.2-92)
with
Gr(j k) = I%i[(A2+KA3+A4)—(A0+KA7+A6)] (15.2-9b)
Geliok) = sl (g + KA +40) ~ (Ag + KAs + 4] (15.2-9¢)

where K = 1. In this formulation, the row and column gradients are normalized to
provide unit-gain positive and negative weighted averages about a separated edge
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position. The Sobel operator edge detector (3, p. 271) differs from the Prewitt edge
detector in that the values of the north, south, east and west pixels are doubled (i.e.,
K =2). The motivation for this weighting is to give equal importance to each pixel in
terms of its contribution to the spatial gradient. Frei and Chen (4) have proposed
north, south, east and west weightings by K = ./2 so that the gradient is the same
for horizontal, vertical and diagonal edges. The edge gradient G(j, k) for these three
operators along a row through the single pixel transition vertical ramp edge model of
Figure 15.1-3 is

Along a row through the single transition pixel diagonal ramp edge model, the gra-
dient is

h h J2 (1 +K)h h h
J2(2+K) J2 2+K 2 J22+K)

In the Frei—-Chen operator with K = ./2, the edge gradient is the same at the edge
center for the single-pixel transition vertical and diagonal ramp edge models.
The Prewitt gradient for a diagonal edge is 0.94 times that of a vertical edge. The
corresponding factor for a Sobel edge detector is 1.06. Consequently, the Prewitt
operator is more sensitive to horizontal and vertical edges than to diagonal edges;
the reverse is true for the Sobel operator. The gradients along a row through the
smoothed transition diagonal ramp edge model are different for vertical and diago-
nal edges for all three of the 3 x 3 edge detectors. None of them are able to localize
the edge to a single pixel.

Figure 15.2-5 shows examples of the Prewitt, Sobel and Frei—Chen gradients of
the peppers image. The reason that these operators visually appear to better delin-
eate object edges than the Roberts operator is attributable to their larger size, which
provides averaging of small luminance fluctuations.

The row and column gradients for all the edge detectors mentioned previously in
this subsection involve a linear combination of pixels within a small neighborhood.
Consequently, the row and column gradients can be computed by the convolution
relationships

GrlJj, k) = F(j, k) ®@Hg(j, k) (15.2-10a)

Ge(), k) = F(j, k) ®H(j, k) (15.2-10b)
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where Hg(j,k) and H,(j,k) are 3x3 row and column impulse response
arrays, respectively, as defined in Figure 15.2-6. It should be noted that this
specification of the gradient impulse response arrays takes into account the 180°
rotation of an impulse response array inherent to the definition of convolution in
Eq. 7.1-14.

(a) Prewitt (b) Sobel

(c) Frei-Chen

FIGURE 15.2-5. Prewitt, Sobel and Frei—Chen gradients of the peppers mon image.

Large Neighborhood Gradient Operators. A limitation common to the edge gra-
dient generation operators previously defined is their inability to detect accurately
edges in high-noise environments. This problem can be alleviated by properly
extending the size of the neighborhood operators over which the differential gradi-
ents are computed. As an example, a Prewitt-type 7 x 7 operator has a row gradient
impulse response of the form
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Operator Row gradient Column gradient
0 0 0 [ 0 -1 07
Pixel difference o 1 -1 0 1
0 0 0 L 0 0 0]
0 0 0 o - 7]
Separated 1 0 -1 0 0 0
pixel difference 0o 0 0 0 1 0
rfo o -1 [ —1 0 0
Roberts o 1 0 0 1 0
| 0 O 0 L O 0 0
F 10 —1 7 -1 =1 =1
. 1 1
Prewitt -1 1 0 -1 - 0 0 0
3 3
L1 0 -1 | L 1 1 1
r1 o —17 -1 -2 -1
1 1
Sobel -l 2 0o -2 - 0 0 0
4 4
L 1 0 —1 ] 1 2 1
1 0 —17 -1 —J2 -1
1 1
Frei-Chen J2 0o -2 0 0
2+ ./2 24 /2
"/-L 1 0 -1 V2 J21

FIGURE 15.2-6. Impulse response arrays for 3 X 3 orthogonal differential gradient edge
operators.

11 1 0 -1 -1 -1

111 0 -1 -1 -l

IR TS T B (S RS G
Hep=511 1 1 0 -1 -1 4 (15.2-11)

11 1 0 -1 -1 -1

111 0 -1 -1 -l

11 1 0 -1 -1 -1

An operator of this type is called a boxcar operator. Figure 15.2-7 presents the box-
car gradient of a 7 x 7 array.
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(a) 7 x 7 boxcar (b) 9 x 9 truncated pyramid

(c) 11 x 11 Argyle, s=2.0 (d) 11 x 11 Macleod, s=2.0

(6) 11 x 11 FDOG, s=2.0

FIGURE 15.2-7. Boxcar, truncated pyramid, Argyle, Macleod and FDOG gradients of the
peppers_mon image.
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Abdou (5) has suggested a truncated pyramid operator that gives a linearly
decreasing weighting to pixels away from the center of an edge. The row gradient
impulse response array for a 7 x 7 truncated pyramid operator is given by

11 1 0 -1 -1 -1

1 2 2 0 =2 -2 -1

2 3 0 32
Hep=5l1 2 3 0 3 2 -1 (15.2-12)

1 2 3 0 -3 -2 -1

1 2 2 0 =2 -2 -1

1 1 1 0 -1 -1 -1

Argyle (6) and Macleod (7,8) have proposed large neighborhood Gaussian-shaped
weighting functions as a means of noise suppression. Let

2l s) = (21521 expl{=1/2(x/5)*} (15.2-13)

denote a continuous domain Gaussian function with standard deviation s. Utilizing
this notation, the Argyle operator horizontal coordinate impulse response array can
be expressed as a sampled version of the continuous domain impulse response

—2g(x,5)8(y, 1) for x>0 (15.2-14a)
HR(jv k) =
2g(x, 5)g(y, 1) for x<0 (15.2-14b)

where s and ¢ are spread parameters. The vertical impulse response function can be
expressed similarly. The Macleod operator horizontal gradient impulse response
function is given by

Hyp(j, k) = [g(x+s,5)—gx—s,5)1g(y, 1) (15.2-15)

The Argyle and Macleod operators, unlike the boxcar operator, give decreasing
importance to pixels far removed from the center of the neighborhood. Figure
15.2-7 provides examples of the Argyle and Macleod gradients.

Extended-size differential gradient operators can be considered to be compound
operators in which a smoothing operation is performed on a noisy image followed
by a differentiation operation. The compound gradient impulse response can be
written as

H(j, k) = Hg(j, k) ®H(, k) (15.2-16)



FIRST-ORDER DERIVATIVE EDGE DETECTION 481

where H(j, k) is one of the gradient impulse response operators of Figure 15.2-6
and Hg(j, k) is a low-pass filter impulse response. For example, if H(j, k) is the
3x 3 Prewitt row gradient operator and Hg(j, k) = 1/9,forall (j, k), is a 3x3 uni-
form smoothing operator, the resultant 5 x5 row gradient operator, after normaliza-
tion to unit positive and negative gain, becomes

1 1 0 -1 -1
1 2 2 0 -2 2
HR = l—é 3 3 0 3 3 (15.2-17)
2 2 0 -2 2
1 1 0 -1 -1

The decomposition of Eq. 15.2-16 applies in both directions. By applying the SVD/
SGK decomposition of Section 9.6, it is possible, for example, to decompose a 5 x 5
boxcar operator into the sequential convolution of a 3 x3 smoothing kernel and a
3 x 3 differentiating kernel.

A well-known example of a compound gradient operator is the first derivative of
Gaussian (FDOG) operator, in which Gaussian-shaped smoothing is followed by
differentiation (9). The FDOG continuous domain horizontal impulse response is

H G, k) = e 9E000)] (15.2-18a)

ox

which upon differentiation yields

Hytj b = Es)e0:) (15.2-18)

N

Figure 15.2-7 presents an example of the FDOG gradient.

Canny Gradient Operators. All of the differential edge enhancement operators
presented previously in this subsection have been derived heuristically. Canny (9)
has taken an analytic approach to the design of such operators. Canny's development
is based on a one-dimensional continuous domain model of a step edge of amplitude
s plus additive white Gaussian noise with standard deviation o, . It is assumed that
edge detection is performed by convolving a one-dimensional continuous domain
noisy edge signal f(x) with an anti-symmetric impulse response function #i(x),
which is of zero amplitude outside the range [-W, W]. An edge is marked at the
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local maximum of the convolved gradient f(x) ® h(x) . The Canny operator contin-
uous domain impulse response /(x) is chosen to satisfy the following three criteria.

1. Good detection. The amplitude signal-to-noise ratio (SNR) of the gradient is max-
imized to obtain a low probability of failure to mark real edge points and a low
probability of falsely marking non-edge points. The SNR for the model is (9)

NR=M

S (15.2-19a)
o, /[ ho) ) ax
which reduces to (10)
sfo h(x)dx
SNR = *W—z (15.2-19b)
can [h(x)]” dx
-W

2. Good localization. Edge points marked by the operator should be as close to
the center of the edge as possible. The localization factor is defined as (9)

‘ ffVWh'(x)f(_x)dx‘

LOC = (15.2-20a)
o, /[l H ) ax
which reduces to (10)
Loc = — SOl (15.2-20b)

o, /ijW[h'(x)]zdx

where 7'(x) is the derivative of h(x).

3. Single response. There should be only a single response to a true edge. The
distance between peaks of the gradient when only noise is present, denoted as

X,,, s set to some fraction k of the operator width factor W. Thus
x, = kW (15.2-21)
Canny has combined these three criteria by maximizing the product of SNR and LOC
subject to the constraint of Eq. 15.2-21. Because of the complexity of the formula-
tion, no analytic solution has been found, but a variational approach has been devel-
oped. Figure 15.2-8 contains plots of the Canny impulse response functions in terms
of x,,. As noted from the figure, for low values of x,,, the Canny function resembles a
boxcar function, while for x,, large, the Canny function is closely approximated by a
FDOG impulse response function. Demigny and Kamle (10) have developed a dis-

crete version of Canny’s three criteria.
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FIGURE 15.2-8. Comparison of Canny and first derivative of Gaussian impulse response
functions.

Tagare and deFugueiredo (11) have questioned the validity of Canny’s approxi-
mations leading to the localization measure LOC of Eq. 15.2-20. Koplowitz and
Greco (12) and Demigny and Kamle (10) have also investigated the accuracy of the
Canny localization measure. Tagare and deFugueiredo (11) have derived the follow-
ing localization measure.

jf"wxz[h(x)]zdx

= — (15.2-22)
[U ) dx
Using this measure, they have determined that the first derivative of Gaussian
impulse response function is optimal for gradient edge detection of step edges.
There have been a number of extensions of Canny’s concept of edge detection.
Bao, Zhang and Wu (13) have used Canny’s impulse response functions at two or
more scale factors, and then formed products of the resulting gradients before
thresholding. They found that this approach improved edge localization with only a
small loss in detection capability. Petrou and Kittler (14) have applied Canny’s
methodology to the detection of ramp edges. Demigny (15) has developed discrete
impulse response function versions of Canny’s detection and localization criteria for
the detection of pulse edges.
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Discrete domain versions of the large operators defined in the continuous
domain can be obtained by sampling their continuous impulse response functions
over some Wx W window. The window size should be chosen sufficiently large
that truncation of the impulse response function does not cause high-frequency
artifacts.

15.2.2. Edge Template Gradient Generation

With the orthogonal differential edge enhancement techniques discussed previously,
edge gradients are computed in two orthogonal directions, usually along rows and
columns, and then the edge direction is inferred by computing the vector sum of the
gradients. Another approach is to compute gradients in a large number of directions
by convolution of an image with a set of template gradient impulse response arrays.
The edge template gradient is defined as

G(j, k) = MAX{ ‘Gl(j, k)

G, Us k)

Gy k)| } (15.2-22a)

5 eeey 5 eeey

where

G, (j, k) = F(j, k) ®H, (j, k) (15.2-22b)

is the gradient in the mth equi-spaced direction obtained by convolving an image
with a gradient impulse response array H, (j, k). The edge angle is determined by
the direction of the largest gradient.

Figure 15.2-9 defines eight gain-normalized compass gradient impulse response
arrays suggested by Prewitt (1, p. 111). The compass names indicate the slope
direction of maximum response. Kirsch (16) has proposed a directional gradient
defined by

7
G(j.k) = MAx{SS,-—3T,-} (15.2-23a)
i=0
where
Sp=Aj+A L A, (15.2-23b)

T, = A 3 +A 4 +A  s+A  s+A, (15.2-23¢)

1
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Prewitt
Gradient compass Robinson Robinson
direction gradient Kirsch I-level 5-level
11 1] 5 -3 -3 10 -1 [ 1+ 6 =1]
East 1 -2 -1 5 0 -3 1 0 -1 2 0 -2
Hy 1 1 14 L § -3 -3l 1 0 -1 L 1 o0 -1}
1 =3 =17 [-3 -3 -3 0 -1 —1] [ 0 =1 -2]
Mortheast 1 -2 -1 5 0 3 1 0 -1 1 [ |
He 11 1 L 5 5 -3l i g g L2 1 ol
-1 =1 —1] (-3 -3 —3] -1 -1 —1] [—1 -2 —1]
North 1 -2 1 -3 0 -3 0o 0 o 0o 0 o0
Ha 11 1 L 5 5 5l S N ER L1 2 1
-1 -1 1] [-3 -3 -3] -1 -1 0 B
Northwest -1 -2 1 -3 0 5 -1 0 1 -1 0 1
Hs 1 1 14 L-3a 5 sl 0 1 1 L& 1 2
=f £ A (-3 -3 5] 10 1 (-1 0 1
West -1 -2 1 -3 0 5 10 1 -2 0 2
Hs -1 1 1 L-3 -3 s -1 0 1 L-1 0 1
[ 1 11 -3 5 5] R [0 1 2
Southwest -1 -2 1 -3 0 5 -1 0 1 1 0 1
He Lg% 4 L-3 -3 -al L-1 -1 o0 L-2 -1 0
1 1 1 [ 5 5 5] [+ 1 1 [ 1 2 1
South 1 =2 1 -3 0 -3 0 0 o 0o o0 o
He L1 =1 =1 L-3' -5 —_al L% % =1 L% .~% 3
[ 1 1 1 [ 5 5 —a] [ 1 1 0 2 1 o0
Southeast 1 =2 -1 5 0 -3 1 0 —1 1 0 -1
Hs L 1 -1 -1 L-3 -3 -zl L o —1 =1 L o -1 =
1 1 1 1
Scale - — - -
factor 5 15 3 4

FIGURE 15.2-9. Template gradient 3 X 3 impulse response arrays.

The subscripts of A; are evaluated modulo 8. It is possible to compute the Kirsch
gradient by convolution as in Eq. 15.2-22b. Figure 15.2-9 specifies the gain-normal-
ized Kirsch operator impulse response arrays. This figure also defines two other sets
of gain-normalized impulse response arrays proposed by Robinson (17), called the
Robinson three-level operator and the Robinson five-level operator, which are
derived from the Prewitt and Sobel operators, respectively. Figure 15.2-10 provides
a comparison of the edge gradients of the peppers image for the four 3 x 3 template
gradient operators.
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(a) Prewitt compass gradient (b) Kirsch

(c) Robinson three-level (d) Robinson five-level

FIGURE 15.2-10. 3 x 3 template gradients of the peppers mon image.

Nevatia and Babu (18) have developed an edge detection technique in which the
gain-normalized 5 x5 masks defined in Figure 15.2-11 are utilized to detect edges
in 30° increments. Figure 15.2-12 shows the template gradients for the peppers
image. Larger template masks will provide both a finer quantization of the edge ori-
entation angle and a greater noise immunity, but the computational requirements
increase. Paplinski (19) has developed a design procedure for n-directional template
masks of arbitrary size.

15.2.3. Threshold Selection

After the edge gradient is formed for the differential edge detection methods, the
gradient is compared to a threshold to determine if an edge exists. The threshold
value determines the sensitivity of the edge detector. For noise-free images, the
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FIGURE 15.2-11. Nevatia—Babu template gradient impulse response arrays.
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FIGURE 15.2-12. Nevatia—Babu gradient of the peppers mon image.

threshold can be chosen such that all amplitude discontinuities of a minimum con-
trast level are detected as edges, and all others are called non-edges. With noisy
images, threshold selection becomes a trade-off between missing valid edges and
creating noise-induced false edges.

Edge detection can be regarded as a hypothesis-testing problem to determine if
an image region contains an edge or contains no edge (20). Let P(edge) and P(no-
edge) denote the a priori probabilities of these events. Then the edge detection pro-
cess can be characterized by the probability of correct edge detection,

P, = f‘” p(Gledge) dG (15.2-24a)
t
and the probability of false detection,
P = f “ p(G|no—edge) dG (15.2-24b)
t

where ¢ is the edge detection threshold and p(Gledge) and p(Glno-edge) are the con-
ditional probability densities of the edge gradient G(j, k) . Figure 15.2-13 is a sketch
of typical edge gradient conditional densities. The probability of edge misclassifica-
tion error can be expressed as

P, = (1-Pp)P(edge) + (Pp)P(no—edge) (15.2-25)
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FIGURE 15.2-13. Typical edge gradient conditional probability densities.

This error will be minimum if the threshold is chosen such that an edge is deemed
present when

p(Gledge)  P(no—edge) (15.2-26)
p(G|no-edge) = P(edge) .

and the no-edge hypothesis is accepted otherwise. Equation 15.2-26 defines the
well-known maximum likelihood ratio test associated with the Bayes minimum error
decision rule of classical decision theory (21). Another common decision strategy,
called the Neyman—Pearson test, is to choose the threshold ¢ to minimize P, for a
fixed acceptable P, (21).

Application of a statistical decision rule to determine the threshold value requires
knowledge of the a priori edge probabilities and the conditional densities of the edge
gradient. The a priori probabilities can be estimated from images of the class under
analysis. Alternatively, the a priori probability ratio can be regarded as a sensitivity
control factor for the edge detector. The conditional densities can be determined, in
principle, for a statistical model of an ideal edge plus noise. Abdou (5) has derived
these densities for 2x2 and 3 x 3 edge detection operators for the case of a ramp
edge of width w = 1 and additive Gaussian noise. Henstock and Chelberg (22) have
used gamma densities as models of the conditional probability densities.

There are two difficulties associated with the statistical approach of determining
the optimum edge detector threshold: reliability of the stochastic edge model and
analytic difficulties in deriving the edge gradient conditional densities. Another
approach, developed by Abdou and Pratt (5,20), which is based on pattern recogni-
tion techniques, avoids the difficulties of the statistical method. The pattern recog-
nition method involves creation of a large number of prototype noisy image regions,
some of which contain edges and some without edges. These prototypes are then
used as a training set to find the threshold that minimizes the classification
error. Details of the design procedure are found in Reference 5. Table 15.2-1
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(a) Sobel, t=0.06 (b) FDOG, t=0.08
(c) Sobel, t=0.08 (d) FDOG, t=0.10
(e) Sobel, t=0.10 (f) FDOG, t=0.12

FIGURE 15.2-14. Threshold sensitivity of the Sobel and first derivative of Gaussian edge
detectors for the peppers mon image.
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provides a tabulation of the optimum threshold for several 2x2 and 3 x3 edge
detectors for an experimental design with an evaluation set of 250 prototypes not in
the training set (20). The table also lists the probability of correct and false edge
detection as defined by Eq. 15.2-24 for theoretically derived gradient conditional
densities. In the table, the threshold is normalized such that 1, = 1/G,, , where G,,
is the maximum amplitude of the gradient in the absence of noise. The power signal-
to-noise ratio is defined as SNR = (h/ Gn)2 where £ is the edge height and o, is the
noise standard deviation. In most of the cases of Table 15.2-1, the optimum thresh-
old results in approximately equal error probabilities (i.e., P, = 1-P,). This is the
same result that would be obtained by the Bayes design procedure when edges and
non-edges are equally probable. The tests associated with Table 15.2-1 were con-
ducted with relatively low signal-to-noise ratio images. Section 15.5 provides exam-
ples of such images. For high signal-to-noise ratio images, the optimum threshold is
much lower. As a rule of thumb, under the condition that P, = 1- P, the edge
detection threshold can be scaled linearly with signal-to-noise ratio. Hence, for an
image with SNR = 100, the threshold is about 10% of the peak gradient value.

Figure 15.2-14 shows the effect of varying the first derivative edge detector
threshold for the 3 x 3 Sobel and the 11 x 11 FDOG edge detectors for the peppers
image, which is a relatively high signal-to-noise ratio image. For both edge detec-
tors, variation of the threshold provides a trade-off between delineation of strong
edges and definition of weak edges.

The threshold selection techniques described in this subsection are spatially
invariant. Rakesh et al. (23) have proposed a spatially adaptive threshold selection
method in which the threshold at each pixel depends upon the statistical variability
of the row and column gradients. They report improved performance with a variety
of non-adaptive edge detectors.

15.2.4. Morphological Post Processing

It is possible to improve edge delineation of first-derivative edge detectors by apply-
ing morphological operations on their edge maps. Figure 15.2-15 provides examples
for the 3x3 Sobel and 11x11 FDOG edge detectors. In the Sobel example, the
threshold is lowered slightly to improve the detection of weak edges. Then the mor-
phological majority black operation is performed on the edge map to eliminate
noise-induced edges. This is followed by the thinning operation to thin the edges to
minimally connected lines. In the FDOG example, the majority black noise smooth-
ing step is not necessary.

15.3. SECOND-ORDER DERIVATIVE EDGE DETECTION

Second-order derivative edge detection techniques employ some form of spatial sec-
ond-order differentiation to accentuate edges. An edge is marked if a significant spa-
tial change occurs in the second derivative. Two types of second-order derivative
methods are considered: Laplacian and directed second derivative.
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(a) Sobel, t=0.07

(b) Sobel majority black (c) Sobel thinned

(d) FDOG, t=0.11 (e) FDOG thinned

FIGURE 15.2-15. Morphological thinning of edge maps for the peppers_mon image.
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15.3.1. Laplacian Generation

The edge Laplacian of an image function F(x,y) in the continuous domain is
defined as

G(x,y) = =VH{F(x, )} (15.3-1a)
where, from Eq. 1.2-17, the Laplacian is
2 2
v, 9 (15.3-1b)
dx~  dy

The Laplacian G(x,y) is zero if F(x,y) is constant or changing linearly in ampli-
tude. If the rate of change of F(x,y) is greater than linear, G(x, y) exhibits a sign
change at the point of inflection of F(x,y). The zero crossing of G(x, y) indicates
the presence of an edge. The negative sign in the definition of Eq. 15.3-1a is present
so that the zero crossing of G(x,y) has a positive slope for an edge whose amplitude
increases from left to right or bottom to top in an image.

Torre and Poggio (24) have investigated the mathematical properties of the
Laplacian of an image function. They have found that if F(x,y) meets certain
smoothness constraints, the zero crossings of G(x, y) are closed curves.

In the discrete domain, the simplest approximation to the continuous Laplacian is
to compute the difference of slopes along each axis:

G(j k) = [F(j, k)= F(j=1,K)]-[F(j+ 1, k)= F(j, k)]
+[F(j, k)= F(j, k+ DI=[F(j, k=1)=F(j, k)] (15.3-2)

This four-neighbor Laplacian (1, p. 111) can be generated by the convolution operation

G(j. k) = F(j, k) ®H(j, k) (15.3-3)
with
0 0 0 0o -1 0
H = -1 2 -1 + 0 2 0 (153-43)
0 0 0 0o -1 0
or

H=|, 4 _ (15.3-4b)
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where the two arrays of Eq. 15.3-4a correspond to the second derivatives along
image rows and columns, respectively, as in the continuous Laplacian of Eq. 15.3-1b.
The four-neighbor Laplacian is often normalized to provide unit-gain averages of the
positive weighted and negative weighted pixels in the 3 x 3 pixel neighborhood. The
gain-normalized four-neighbor Laplacian impulse response is defined by

H = i 1 4 -1 (15.3-5)

Prewitt (1, p. 111) has suggested an eight-neighbor Laplacian defined by the gain-
normalized impulse response array

1 -1 -1 -1
H=¢| 1 g o1 (15.3-6)
-1 -1 -1

This array is not separable into a sum of second derivatives, as in Eq. 15.3-4a. A
separable eight-neighbor Laplacian can be obtained by the construction

-1 2 -1 -1 -1 -1
H=|_1 2 _1/+]| 2 ) (15.3-7)
-1 2 -1 -1 -1 -1

in which the difference of slopes is averaged over three rows and three columns. The
gain-normalized version of the separable eight-neighbor Laplacian is given by

1 -2 1 =2
H = 3 1 4 1 (15.3-8)
-2 1 =2

It is instructive to examine the Laplacian response to the edge models of Figure
15.1-3. As an example, the separable eight-neighbor Laplacian corresponding to the
center row of the vertical step edge model is

where 7 = b-a is the edge height. The Laplacian response of the vertical ramp
edge model is
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S3ho 3k

0 16 16

0

For the vertical edge ramp edge model, the edge lies at the zero crossing pixel
between the negative- and positive-value Laplacian responses. In the case of the step
edge, the zero crossing lies midway between the neighboring negative and positive
response pixels; the edge is correctly marked at the pixel to the right of the zero
crossing. The Laplacian response for a single-transition-pixel diagonal ramp edge
model is

and the edge lies at the zero crossing at the center pixel. The Laplacian response for
the smoothed transition diagonal ramp edge model of Figure 15.1-3 is

ch ch ch b b ko
16 8 16 16 8 16

In this example, the zero crossing does not occur at a pixel location. The edge should
be marked at the pixel to the right of the zero crossing. Figure 15.3-1 shows the
Laplacian response for the two ramp corner edge models of Figure 15.1-3. The edge
transition pixels are indicated by line segments in the figure. A zero crossing exists
at the edge corner for the smoothed transition edge model, but not for the single-
pixel transition model. The zero crossings adjacent to the edge corner do not occur
at pixel samples for either of the edge models. From these examples, it can be con-
cluded that zero crossings of the Laplacian do not always occur at pixel samples.
But for these edge models, marking an edge at a pixel with a positive response that
has a neighbor with a negative response identifies the edge correctly.

Figure 15.3-2 shows the Laplacian responses of the peppers image for the three
types of 3x3 Laplacians. In these photographs, negative values are depicted as
dimmer than mid gray and positive values are brighter than mid gray.

Marr and Hildrith (25) have proposed the Laplacian of Gaussian (LOG) edge
detection operator in which Gaussian-shaped smoothing is performed prior to appli-
cation of the Laplacian. The continuous domain LOG gradient is

G(x,y) = -VH{F(x,y) ®Hg(x,y)} (15.3-9a)

where

G(x,y) = g(x, 5)g(y, s) (15.3-9b)
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 -1 -1 —-3/2 -—-3/2 -3/2 -—-3/2
0 0 -1 1 1 0 0 0
0 0 -3/2 1 2 3/2 3/2 3/2
0 0 -3/2 0 3/2 0 0 0
0 0 -3/2 0 3/2 0 0 0
0 0 -3/2 0 3/2 0 0 0
Single pixel transition model

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 —1/2 -3/4 -1 -—3/2 -3/2 -3/2
0 0 —3/4 0 3/4 0 0 0
0 0 —1 3/4 . 5/2 3/2 3/2 3/2
0 0 -—-3/2 0 3/2 0 0 0
0 0 -—-3/2 0 3/2 0 0

0 0 —3/2 0 3/2 0 0 0

Smoothed transition model

FIGURE 15.3-1. Separable eight-neighbor Laplacian responses for ramp corner models; all
values should be scaled by //8.

is the impulse response of the Gaussian smoothing function as defined by Eq.
15.2-13. As a result of the linearity of the second derivative operation and of the lin-
earity of convolution, it is possible to express the LOG response as

G(j, k) = F(j, k) ®@H(j, k) (15.3-10a)
where
H(x,y) = =V2{g(x,5)8(y,5)} (15.3-10b)

Upon differentiation, one obtains

1 2 2 2 2
H(x,y) = — [1 —’ﬁ-ig-Jexp {—i‘-i—y-} (15.3-11)

s 2s 2s2
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4-neighbor Laplacian

(a) Four-neighbor (b) Eight-neighbor

(c) Separable eight-neighbor (d) 11 x 11 Laplacian of Gaussian
FIGURE 15.3-2. Laplacian responses of the peppers_mon image.
Figure 15.3-3 is a cross-sectional view of the LOG continuous domain impulse

response. In the literature, it is often called the Mexican hat filter. It can be shown
(26,27) that the LOG impulse response can be expressed as

2 2
H(x,y) = —1—2( —y—z)g(x,s)g(y,s)+—1§(1—x—2Jg(x,s)g(y,s) (15.3-12)
N N

s S

Consequently, the convolution operation can be computed separably along rows and
columns of an image. It is possible to approximate the LOG impulse response closely
by a difference of Gaussians (DOG) operator. The resultant impulse response is

H(x,y) = g(x,5)g(, 5) —g(x, 5,)8(y, 55) (15.3-13)
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| [P | ] | | |

| \] v |
FIGURE 15.3-3. Cross section of continuous domain Laplacian of Gaussian impulse
response.

where s, <s, . Marr and Hildrith (25) have found that the ratio s,/s, = 1.6 provides
a good approximation to the LOG.

A discrete domain version of the LOG operator can be obtained by sampling the
continuous domain impulse response function of Eq. 15.3-11 over a W x W window.
To avoid deleterious truncation effects, the size of the array should be set such that
W = 3c, or greater, where ¢ = 2./2 s is the width of the positive center lobe of the
LOG function (27). Figure 15.3-2d shows the LOG response of the peppers image
fora 11 x 11 operator.

15.3.2. Laplacian Zero-Crossing Detection

From the discrete domain Laplacian response examples of the preceding section, it
has been shown that zero crossings do not always lie at pixel sample points. In fact,
for real images subject to luminance fluctuations that contain ramp edges of varying
slope, zero-valued Laplacian response pixels are unlikely.

A simple approach to Laplacian zero-crossing detection in discrete domain
images is to form the maximum of all positive Laplacian responses and to form the
minimum of all negative-value responses in a 3 x 3 window. If the magnitude of the
difference between the maxima and the minima exceeds a threshold, an edge is
judged present.

Huertas and Medioni (27) have developed a systematic method for classifying
3x3 Laplacian response patterns in order to determine edge direction. Figure
15.3-4 illustrates a somewhat simpler algorithm. In the figure, plus signs denote
positive-value Laplacian responses, and negative signs denote negative Laplacian
responses. The algorithm can be implemented efficiently using morphological
image processing techniques.
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FIGURE 15.3-4. Laplacian zero-crossing patterns.

15.3.3. Directed Second-Order Derivative Generation

Laplacian edge detection techniques employ rotationally invariant second-order dif-
ferentiation to determine the existence of an edge. The direction of the edge can be
ascertained during the zero-crossing detection process. An alternative approach is
first to estimate the edge direction and then compute the one-dimensional second-
order derivative along the edge direction. A zero crossing of the second-order
derivative specifies an edge.

The directed second-order derivative of a continuous domain image F(x, y) along
a line at an angle 6 with respect to the horizontal axis is given by

2 2 2
F"”(x,y) = I F(x,y) c0s’0 + J F(x,y) cos 0 sin 6 + O F(x,y) sin’@ (15.3-14)
axz axay ayz

It should be noted that, unlike the Laplacian, the directed second-order derivative is
a nonlinear operator. Convolving a smoothing function with F(x, y) prior to differ-
entiation is not equivalent to convolving the directed second derivative of F(x, y)
with the smoothing function.
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A key factor in the utilization of the directed second-order derivative edge detec-
tion method is the ability to determine its suspected edge direction accurately. One
approach is to employ some first-order derivative edge detection method to estimate
the edge direction, and then compute a discrete approximation to Eq. 15.3-14.
Another approach, proposed by Haralick (28), involves approximating F(x,y) by a
two-dimensional polynomial, from which the directed second-order derivative can
be determined analytically.

As an illustration of Haralick's approximation method, called facet modeling, let
the continuous image function F(x,y) be approximated by a two-dimensional qua-
dratic polynomial

ﬁ(r, c) =k +kyr+ k3c+k4r2+k5rc+k602+k7r62+k8r20+k9r202 (15.3-15)

about a candidate edge point (j, k) in the discrete image F(j, k) , where the k, are
weighting factors to be determined from the discrete image data. In this notation, the
indices -(W—-1)/2<r,c<(W-1)/2 are treated as continuous variables in the row
(x-coordinate) and column (y-coordinate) directions of the discrete image, but the
discrete image is, of course, measurable only at integer values of r and c. From this
model, the estimated edge angle is

k
0 = arctan {—2} (15.3-16)
ks

In principle, any polynomial expansion can be used in the approximation. The
expansion of Eq. 15.3-15 was chosen because it can be expressed in terms of a set of
orthogonal polynomials. This greatly simplifies the computational task of determin-
ing the weighting factors. The quadratic expansion of Eq. 15.3-15 can be rewritten as

N
F(re)y= ¥ a,P,(rc) (15.3-17)

n=1

where P, (r,c) denotes a set of discrete orthogonal polynomials and the a, are
weighting coefficients. Haralick (28) has used the following set of 3 x3 Chebyshev
orthogonal polynomials:

Pi(r,e) =1 (15.3-18a)

Py(r,c) = r (15.3-18b)

Py(r,c) = ¢ (15.3-18c¢)
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Pyre) = r*-2 (15.3-18d)
Ps(r,c) = rc (15.3-18e)
Py(rc) = -2 (15.3-18f)
Po(r.c) = c(r2_§) (15.3-18g)
Py(r,c) = r(cz—é) (15.3-18h)
Py(r.c) = (ﬂ_%)(CZ_%) (15.3-18i)

defined over the (7, ¢) index set {—1, 0, 1}. To maintain notational consistency with
the gradient techniques discussed previously, r and ¢ are indexed in accordance with
the (x, y) Cartesian coordinate system (i.e.,  is incremented positively up rows and ¢
is incremented positively left to right across columns). The polynomial coefficients
k, of Eq. 15.3-15 are related to the Chebyshev weighting coefficients by

2 2 4

ky = al—§a4—§a6+§a9 (15.3-19a)
k= a,-2a (15.3-19b)
2 2 3 7 .

ki = ar—2a (15.3-19¢)
3 3 3 8 .

ky = a4—§a9 (15.3-19d)
ks = ag (15.3-19)
ke = aﬁ—§a9 (15.3-19f)
k; = a, (15.3-19g)
ky = ag (15.3-19h)

ky = aq (15.3-19i)
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The optimum values of the set of weighting coefficients a,, that minimize the mean-
square error between the image data F(r, ¢) and its approximation F(r, ¢) are found
to be (28)

Zz P, (r,c)F(r,c)
T3 1P,

As a consequence of the linear structure of this equation, the weighting coefficients
A,(j, k) = a, at each point in the image F(j, k) can be computed by convolution of
the image with a set of impulse response arrays. Hence

a

(15.3-20)

A, k) = F(j, k) ®H,(j, k) (15.3-21a)
where

P, (=), —k)

PIPNLACANE

Figure 15.3-5 contains the nine impulse response arrays corresponding to the 3 x 3
Chebyshev polynomials. The arrays H, and H3, which are used to determine the
edge angle, are seen from Figure 15.3-5 to be the Prewitt column and row operators,
respectively. The arrays H, and Hg are second derivative operators along columns
and rows, respectively, as noted in Eq. 15.3-7. Figure 15.3-6 shows the nine weight-
ing coefficient responses for the peppers image.

H,(j. k) = (15.3-21b)

M1 1 17 -1 — —17 o1 0 —17
1 1 1
- 1 1 1 -1 0 0 0 - 1 0 -1
9 6 6
L1 1 1] L 1 1 1] L 1 0 —1]
H, H; H;
1 1 17] [ —1 17 [ 1 =2 17
1 1 1
- -2 -2 -2 -1 0 0 0 - 1 =2 1
6 4 6
L 1 1 1] L 1 0 —1] L 1 -2 1]
Hy Hs Hg
1 0 -1 [ —1 2 —17 [ 1 -2 1
1
-2 0 2 0 0 0 - =2 4 -2
4 4
1 0 -1 L 1 -2 1] L 1 -2 1
H; Hg Hy

FIGURE 15.3-5. Chebyshev polynomial 3 x 3 impulse response arrays.
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(a) Chebyshev 1 (b) Chebyshev 2

Chabysheau #4

(c) Chebyshev 3 (d) Chebyshev 4

Chabyshav #B6

(e) Chebyshev 5 (f) Chebyshev 6

FIGURE 15.3-6. 3 x 3 Chebyshev polynomial responses for the peppers_mon image.
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Chebyshav #7

(g) Chebyshev 7

Chabyshav #8 Chebyshav #9

(h) Chebyshev 8 (/) Chebyshev 9

FIGURE 15.3-6 (Continued). 3 % 3 Chebyshev polynomial responses for the peppers_mon
image.

The second derivative along the line normal to the edge slope can be expressed
explicitly by performing second-order differentiation on Eq. 15.3-15. The result is

i«“"(r, c) = 2k, sin20 + 2ks sin © cos 0 + 2k cos?0

+ (4k; sin Ocos 0 + 2kg cos?0)r + (2k4 sin? 0 + 4kg sinOcos 0)c

+(2ky cos20)r” + (8k, sin O cos 0)rc + (2K, sin20)c” (15.3-22)
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This second derivative need only be evaluated on a line in the suspected edge direc-
tion. With the substitutions » = psin® and ¢ = pcos 6, the directed second-order
derivative can be expressed as

I:"”(p) = 2(k, sin?0 + ks sinBcosO + k cos20)

+ 6 s5in ©cos O (k;sin 6 + kgcos 0) p + 12 (k9sin2900526)p2 (15.3-23)

The next step is to detect zero crossings of ﬁ”(p) in a unit pixel range -0.5<p <0.5
of the suspected edge. This can be accomplished by computing the real root (if it
exists) within the range of the quadratic relation of Eq. 15.3-23.

15.4. EDGE-FITTING EDGE DETECTION

Ideal edges may be viewed as one- or two-dimensional edges of the form sketched
in Figure 15.1-1. Actual image data can then be matched against, or fitted to, the
ideal edge models. If the fit is sufficiently accurate at a given image location, an
edge is assumed to exist with the same parameters as those of the ideal edge
model.

FIGURE 15.4-1. One- and two-dimensional edge fitting.
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In the one-dimensional edge-fitting case described in Figure 15.4-1, the image
signal f(x) is fitted to a step function
for x < x (15.4-1a)

s(x) =

as+h  forxzx, (15.4-1b)

An edge is assumed present if the mean-square error

E-= fx°+L[f(x)—s(x)]2dx (15.4-2)

xo—L

is below some threshold value. In the two-dimensional formulation, the ideal step
edge is defined as

for xcos® + ysin® < p (15.4-3a)
s(x) =

a+h  for xcos6+ysin®2=p (15.4-3b)

where 6 and p jointly specify the polar distance from the center of a circular test
region to the normal point of the edge. The edge-fitting error is

E = [[ 1F(ry) = SCe ) dedy (15.4-4)

where the integration is over the circle in Figure 15.4-1.

Hueckel (29) has developed a procedure for two-dimensional edge fitting in
which the pixels within the circle of Figure 15.4-1 are expanded in a set of two-
dimensional basis functions by a Fourier series in polar coordinates. Let B,(x,y)
represent the basis functions. Then, the weighting coefficients for the expansions of
the image and the ideal step edge become

fi= '” B;(x, y)F(x, y)dxdy (15.4-5a)

s5; = J‘J. B,(x, y)S(x,y) dxdy (15.4-5b)

In Hueckel's algorithm, the expansion is truncated to eight terms for computational
economy and to provide some noise smoothing. Minimization of the mean-square-error
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difference of Eq. 15.4-4 is equivalent to minimization of (f;- sl.)2 for all coefficients.
Hueckel has performed this minimization, invoking some simplifying approximations,
and has formulated a set of nonlinear equations expressing the estimated edge parame-
ter set in terms of the expansion coefficients f; .

Nalwa and Binford (30) have proposed an edge-fitting scheme in which the edge
angle is first estimated by a sequential least-squares fit within a 5 x5 region. Then,
the image data along the edge direction is fit to a hyperbolic tangent function

p
tanhp = &—=¢ (15.4-6)

e +e

as shown in Figure 15.4-2.
Edge-fitting methods require substantially more computation than do derivative edge
detection methods. Their relative performance is considered in the following section.

0] X
FIGURE 15.4-2. Hyperbolic tangent edge model.

15.5. LUMINANCE EDGE DETECTOR PERFORMANCE

Relatively few comprehensive studies of edge detector performance have been
reported in the literature (15,31-35). A performance evaluation is difficult because
of the large number of methods proposed, problems in determining the optimum
parameters associated with each technique and the lack of definitive performance
criteria.

In developing performance criteria for an edge detector, it is wise to distinguish
between mandatory and auxiliary information to be obtained from the detector.
Obviously, it is essential to determine the pixel location of an edge. Other informa-
tion of interest includes the height and slope angle of the edge as well as its spatial
orientation. Another useful item is a confidence factor associated with the edge deci-
sion, for example, the closeness of fit between actual image data and an idealized
model. Unfortunately, few edge detectors provide this full gamut of information.

The next sections discuss several performance criteria. No attempt is made to
provide a comprehensive comparison of edge detectors.
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15.5.1. Edge Detection Probability

The probability of correct edge detection P, and the probability of false edge detection
Pp, as specified by Eq. 15.2-24, are useful measures of edge detector performance. The
trade-off between Pp and P can be expressed parametrically in terms of the detection
threshold. Figure 15.5-1 presents analytically derived plots of Pp, versus P for several
differential operators for vertical and diagonal edges and a signal-to-noise ratio of 1.0
and 10.0 (20). From these curves, it is apparent that the Sobel and Prewitt 3 x 3 opera-
tors are superior to the Roberts 2 x 2 operators. The Prewitt operator is better than the
Sobel operator for a vertical edge. But for a diagonal edge, the Sobel operator is supe-
rior. In the case of template-matching operators, the Robinson three-level and five-
level operators exhibit almost identical performance, which is superior to the Kirsch
and Prewitt compass gradient operators. Finally, the Sobel and Prewitt differential
operators perform slightly better than the Robinson three- and Robinson five-level
operators. It has not been possible to apply this statistical approach to any of the larger
operators because of analytic difficulties in evaluating the detection probabilities.

FIGURE 15.5-1. Probability of detection versus probability of false detection for 2 X 2 and
3 X 3 operators.
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15.5.2. Edge Detection Orientation

An important characteristic of an edge detector is its sensitivity to edge orientation.
Abdou and Pratt (20) have analytically determined the gradient response of 3 x 3
template matching edge detectors and 2x2 and 3 x3 orthogonal gradient edge
detectors for square-root and magnitude combinations of the orthogonal gradients.
Figure 15.5-2 shows plots of the edge gradient as a function of actual edge orienta-
tion for a unit-width ramp edge model. The figure clearly shows that magni-
tude combination of orthogonal gradients is inferior to square-root combination.
Figure 15.5-3 is a plot of the detected edge angle as a function of the actual orien-
tation of an edge. The Sobel operator provides the most linear response. Laplacian

FIGURE 15.5-2. Edge gradient response as a function of edge orientation for 2 x 2 and 3 x 3
first derivative operators.

FIGURE 15.5-3. Detected edge orientation as a function of actual edge orientation for 2 x 2
and 3 X 3 first derivative operators.
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edge detectors are rotationally symmetric operators, and hence are invariant to edge
orientation. The edge angle can be determined to within 45° increments during the
3 x 3 pixel zero-crossing detection process.

15.5.3. Edge Detection Localization

Another important property of an edge detector is its ability to localize an edge.
Abdou and Pratt (20) have analyzed the edge localization capability of several first
derivative operators for unit width ramp edges. Figure 15.5-4 shows edge models in
which the sampled continuous ramp edge is displaced from the center of the
operator.

Figure 15.5-5 shows plots of the gradient response as a function of edge dis-
placement distance for vertical and diagonal edges for 2x2 and 3 x 3 orthogonal
gradient and 3 x 3 template matching edge detectors. All of the detectors, with the
exception of the Kirsch operator, exhibit a desirable monotonically decreasing
response as a function of edge displacement. If the edge detection threshold is set at
one-half the edge height, or greater, an edge will be properly localized in a noise-
free environment for all of the operators, with the exception of the Kirsch operator,
for which the threshold must be slightly higher.

(a) 2 x 2 model

(b) 3 x 3 model
FIGURE 15.5-4. Edge models for edge localization analysis.
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FIGURE 15.5-5. Edge gradient response as a function of edge displacement distance for
2 x 2 and 3 x 3 first derivative operators.

Figure 15.5-6 illustrates the gradient response of boxcar operators as a function of
their size (5). A gradient response comparison of 7 x 7 orthogonal gradient operators
is presented in Figure 15.5-7. For such large operators, the detection threshold must be
set relatively high to prevent smeared edge markings. Setting a high threshold will, of
course, cause low-amplitude edges to be missed.

Ramp edges of extended width can cause difficulties in edge localization. For
first-derivative edge detectors, edges are marked along the edge slope at all points
for which the slope exceeds some critical value. Raising the threshold results in the
missing of low-amplitude edges. Second derivative edge detection methods are often
able to eliminate smeared ramp edge markings. In the case of a unit width ramp
edge, a zero crossing will occur only at the midpoint of the edge slope. Extended-
width ramp edges will also exhibit a zero crossing at the ramp midpoint provided
that the size of the Laplacian operator exceeds the slope width. Figure 15.5-8 illus-
trates Laplacian of Gaussian (LOG) examples (27).
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FIGURE 15.5-6. Edge gradient response as a function of edge displacement distance for
variable-size boxcar operators.

FIGURE 15.5-7 Edge gradient response as a function of edge displacement distance for sev-
eral 7 x 7 orthogonal gradient operators.

Berzins (36) has investigated the accuracy to which the LOG zero crossings
locate a step edge. Figure 15.5-9 shows the LOG zero crossing in the vicinity of a
corner step edge. A zero crossing occurs exactly at the corner point, but the zero-
crossing curve deviates from the step edge adjacent to the corner point. The maxi-
mum deviation is about 0.3s, where s is the standard deviation of the Gaussian
smoothing function.
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FIGURE 15.5-8. Laplacian of Gaussian response of continuous domain for high- and low-
slope ramp edges.

FIGURE 15.5-9. Locus of zero crossings in vicinity of a corner edge for a continuous Lapla-
cian of Gaussian edge detector.

15.5.4. Edge Detector Figure of Merit

There are three major types of error associated with determination of an edge: (1)
missing valid edge points, (2) failure to localize edge points and (3) classification of
noise fluctuations as edge points. Figure 15.5-10 illustrates a typical edge segment in a
discrete image, an ideal edge representation and edge representations subject to var-
ious types of error.

A common strategy in signal detection problems is to establish some bound on
the probability of false detection resulting from noise and then attempt to maximize
the probability of true signal detection. Extending this concept to edge detection
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simply involves setting the edge detection threshold at a level such that the probabil-
ity of false detection resulting from noise alone does not exceed some desired value.
The probability of true edge detection can readily be evaluated by a coincidence
comparison of the edge maps of an ideal and an actual edge detector. The penalty for
non-localized edges is somewhat more difficult to access. Edge detectors that pro-
vide a smeared edge location should clearly be penalized; however, credit should be
given to edge detectors whose edge locations are localized but biased by a small
amount. Pratt (37) has introduced a figure of merit that balances these three types of
error. The figure of merit is defined by

A

1

1 1

R =— (15.5-1)
Iy E{ 1+ad”

where I, = MAX{/,I,} and I, and I, represent the number of ideal and actual
edge map points, a is a scaling constant and d is the separation distance of an actual
edge point normal to a line of ideal edge points. The rating factor is normalized so

FIGURE 15.5-10. Indications of edge location.
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that R = 1 for a perfectly detected edge. The scaling factor may be adjusted to
penalize edges that are localized but offset from the true position. Normalization by
the maximum of the actual and ideal number of edge points ensures a penalty for
smeared or fragmented edges. As an example of performance, if « = 1/9, the rat-
ing of a vertical detected edge offset by one pixel becomes R = 0.90, and a two-pixel
offset gives a rating of R = 0.69. With a = 1/9, a smeared edge of three pixels
width centered about the true vertical edge yields a rating of R = 0.93, and a five-
pixel-wide smeared edge gives R = 0.84. A higher rating for a smeared edge than for
an offset edge is reasonable because it is possible to thin the smeared edge by mor-
phological postprocessing.

The figure-of-merit criterion described above has been applied to the assessment
of some of the edge detectors discussed previously, using a test image consisting of
a 64 x 64 pixel array with a vertically oriented edge of variable contrast and slope
placed at its center. Independent Gaussian noise of standard deviation o, has been
added to the edge image. The signal-to-noise ratio is defined as SNR = (h/c ) ,
where £ is the edge height scaled over the range 0.0 to 1.0. Because the purpose of
the testing is to compare various edge detection methods, for fairness it is important
that each edge detector be tuned to its best capabilities. Consequently, each edge
detector has been permitted to train both on random noise fields without edges and
the actual test images before evaluation. For each edge detector, the threshold
parameter has been set to achieve the maximum figure of merit subject to the maxi-
mum allowable false detection rate.

Figure 15.5-11 shows plots of the figure of merit for a vertical ramp edge as a
function of signal-to-noise ratio for several edge detectors (5). The figure of merit is
also plotted in Figure 15.5-12 as a function of edge width. The figure of merit curves
in the figures follow expected trends: low for wide and noisy edges; and high in the
opposite case. Some of the edge detection methods are universally superior to others
for all test images. As a check on the subjective validity of the edge location figure
of merit, Figures 15.5-13 and 15.5-14 present the edge maps obtained for several
high-and low-ranking edge detectors. These figures tend to corroborate the utility of
the figure of merit. A high figure of merit generally corresponds to a well-located
edge upon visual scrutiny, and vice versa.

15.5.5. Subjective Assessment

In many, if not most applications in which edge detection is performed to outline
objects in a real scene, the only performance measure of ultimate importance is how
well edge detector markings match with the visual perception of object boundaries.
A human observer is usually able to discern object boundaries in a scene quite accu-
rately in a perceptual sense. However, most observers have difficulty recording their
observations by tracing object boundaries. Nevertheless, in the evaluation of edge
detectors, it is useful to assess them in terms of how well they produce outline draw-
ings of a real scene that are meaningful to a human observer.

The peppers image of Figure 15.2-2 has been used for the subjective assessment
of edge detectors. The peppers in the image are visually distinguishable objects, but
shadows and nonuniform lighting create a challenge to edge detectors, which by
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FIGURE 15.5-11. Edge location figure of merit for a vertical ramp edge as a function of sig-

nal-to-noise ratio for 4 =0.1 and w = 1.

100 T T T T T
SOBEL
~ 80 -
o
L
= 60 PREWITT R
(”5 COMPASS
w40l ROBERTS |
% MAGNITUDE
[O)
T 20} -
0 I . 1 ' 1 '
7 5 3 1

EDGE WIDTH, PIXELS

FIGURE 15.5-12. Edge location figure of merit for a vertical ramp edge as a function of sig-

nal-to-noise ratio for 2 = 0.1 and SNR = 100.
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SNR =100
(a) Original (b) Edge map, R=100%

SNR =10
(c) Original (d) Edge map, R=85.1%

SNR=1
(e) Original (f) Edge Map, R=24.2%

FIGURE 15.5-13. Edge location performance of Sobel edge detector as a function of signal-
to-noise ratio, h=0.1, w=1,a=1/9.
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(a) Original (b) East compass, R=66.1%

(c) Roberts magnitude, R=31.5% (d) Roberts square root, R=37.0%

(e) Sobel, R=85.1% () Kirsch, R =80.8%

FIGURE 15.5-14. Edge location performance of several edge detectors for SNR = 10,
h=01,w=1,a=1/09.



520 EDGE DETECTION

definition do not utilize higher-order perceptive intelligence. Figures 15.5-15 and
15.5-16 present edge maps of the peppers image for several edge detectors. The

(a) 2 x 2 Roberts, t=0.08 (b) 3 x 3 Prewitt, t=0.08
(c) 3 x 3 Sobel, t=0.09 (d) 38 x 3 Robinson five-level
(e) 5 x 5 Nevatia—Babu, t=0.05 (f) 3 x 3 Laplacian

FIGURE 15.5-15. Edge maps of the peppers mon image for several small edge detectors.
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parameters of the various edge detectors have been chosen to produce the best visual
delineation of objects.

(a) 7 x 7 boxcar, t=0.10 (b) 9 x 9 truncated pyramid, t=0.10
(c) 11 x 11 Argyle, t=0.05 (d) 11 x 11 Macleod, t=0.10
(e) 11 x 11 derivative of Gaussian, t=0.11 (f) 11 x 11 Laplacian of Gaussian

FIGURE 15.5-16. Edge maps of the peppers_mon image for several large edge detectors.
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Heath et al. (34) have performed extensive visual testing of several complex edge
detection algorithms, including the Canny and Nalwa—Binford methods, for a num-
ber of natural images. The judgment criterion was a numerical rating as to how well
the edge map generated by an edge detector allows for easy, quick and accurate rec-
ognition of objects within a test image.

15.6. COLOR EDGE DETECTION

In Chapter 3, it was established that color images may be described quantitatively at
each pixel by a set of three tristimulus values Ty, T, T3, which are proportional to
the amount of red, green and blue primary lights required to match the pixel color.
The luminance of the color is a weighted sum Y = a,T, +a,T, + a;T; of the tris-
timulus values, where the ; are constants that depend on the spectral characteristics
of the primaries.

Several definitions of a color edge have been proposed (38,39). An edge in a
color image can be said to exist if and only if its luminance representation contains a
monochrome edge. This definition ignores discontinuities in hue and saturation that
occur in regions of constant luminance. Figure 2 of reference 39 shows an artificial
image, which consists of a checkerboard grid of three different color squares of
identical luminance but differing hue and saturation. The color squares are visually
distinct but the color image contains no luminance edges.

Another definition is to judge a color edge present if an edge exists in any of its
constituent tristimulus components. A third definition is based on forming the sum
of the magnitudes

GG ) = [G1G, R)| +[Gal, 0] + [GaG, b (15.6-1a)
or the vector sum
GG.K) = [[G,(. T +[GyG. 012 + 16506, 111 (15.6-1b)

of the gradients G,(j, k) of the three tristimulus values or some linear or nonlinear
color components. A color edge exists if the gradient G(j, k) exceeds a threshold.
With the tri-component definitions of color edges, results are dependent on the
particular color coordinate system chosen for representation. Figure 15.6-1 is a color
photograph of the peppers image and monochrome photographs of its red, green and
blue components. The YIQ and L*a*b* coordinates are shown in Figure 15.6-2.
Edge maps of the individual RGB components are shown in Figure 15.6-3 for Sobel
edge detection. This figure also shows the logical OR of the RGB edge maps plus
the edge maps of the gradient sum and the vector sum. The RGB gradient vector sum
edge map provides slightly better visual edge delineation than that provided by the
gradient sum edge map; the logical OR edge map tends to produce thick edges and
numerous isolated edge points. Sobel edge maps for the YIQ and the L*a*b* color
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(a) Monochrome representation (b) Red component

(c) Green component (d) Blue component

FIGURE 15.6-1. The peppers_gamma color image and its RGB color components. See
insert for a color representation of this figure.

components are presented in Figures 15.6-4 and 15.6-5. The YIQ gradient vector
sum edge map gives the best visual edge delineation, but it does not delineate edges
quite as well as the RGB vector sum edge map. Edge detection results for the
L*a*b* coordinate system are quite poor because the a* component is very noise
sensitive.

Koschan and Abidi (39) have reviewed the investigation, performed by Kanade
(40), for using the Canny operator for color edge detection. The first step in this
application is to determine the best row and column impulse response functions that
satisfy the three Canny criteria for each color component. These functions are then
applied to each component to determine the edge direction and edge magnitude
Then the color gradient is found using Eq. 15.6-1 or some other combination func-
tion. Finally, the color gradient is thresholded to create a composite edge map.
Kanade observed that the color edges better describe the visual object geometry than
the luminance edges.
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(a) Y component (b) L* component
(¢) I component (d) a* component
(e) Q component (f) b* component

FIGURE 15.6-2. YIQ and L*a*b* color components of the peppers gamma image.
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(a) Red edge map (b) Logical OR of RGB edges
(c) Green edge map (d) RGB sum edge map
(e) Blue edge map (f) RGB vector sum edge map

FIGURE 15.6-3. Sobel edge maps for edge detection using the RGB color components of
the peppers gamma image.
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(a) Y edge map (b) Logical OR of YIQ edges
(c) 1 edge map (d) YIQ sum edge map
(e) Q edge map (f) YIQ vector sum edge map

FIGURE 15.6-4. Sobel edge maps for edge detection using the Y/Q color components of the
peppers_gamma image.
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(a) L* edge map (b) Logical OR of L*a*b* edges
(c) a* edge map (d) L*a*b* sum edge map
(e) b* edge map (f) L*a*b* vector sum edge map

FIGURE 15.6-5. Sobel edge maps for edge detection using the L*a*b* color components of
the peppers gamma image.
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Cumani (41) has developed a method for detecting edges in multispectral images.
Koschan and Abidi (39) have summarized its usage as a color edge detector. In the
continuous domain, let C;(x,y) denote the color components R(x,y), G(x,y) and
B(x,y) for i =1, 2, 3, respectively. Cumani has defined a squared local contrast
function. For a color image, it is defined as (39)

S(p,m) = K[n,]” +2Fn,n, + Hin,|* (15.6-2a)

at p = [x y].Itis a quadratic norm of the directional derivatives of the color image
toward the unit vector n = [n; n,] where

K’=i§%[gfﬂ2 (15.6-2b)
11=i§%E:ﬂ2 (15.6-2¢)
P i B‘ﬂ Béj (15.6-2d)

The edge parameters that maximize S(p,n) are related to the eigenvalues of the
matrix A (39,41)

A= {K F} (15.6-3)
F H

The eigenvalues, and corresponding eigenvectors, can be found through a principal
components analysis. See Appendix Al.2. Koschan and Abidi (39) have tested the
Cumani operator on some images of building blocks, and found it to more sensitive
to the detection of structural color edges than the Canny color operator.

Trahanias and Venetsanopoulos (42) have developed a color edge detector based
upon vector order statistics. The detector operates as follows. Let x; represent the
ith 3x 1 color vector in a window centered about a suspected edge, which contains
n color pixels. The following distance metric

d; = z x; = x| (15.6-4)
k=1
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is formed between x; and all other vectors in the window, where || ¢ || is a vector
norm as in Eq. 15.6-1. Next, the distances are sorted in ascending order

and the same ordering is applied to the new set called y,. In the rearranged
sequence, y, is the vector mean of the window samples and y, is the largest sam-
ple. A simple color edge detector can be obtained by thresholding the vector rank
operator

VR = |y, v (15.6-5)

A color edge is judged present if VR is above the threshold value. This approach
works well for noise-free images. It fails for noisy images because the larger half
of the sequence contains the most noisy samples. Trahanias and Venetsanopoulos
have proposed a minimum vector dispersion (MVD) method of sample sorting,
which mitigates the effect of noisy samples. References 39 and 42 describe the
MVD method. Testing, using Pratt’s figure of merit of Eq. 15.5-1, indicates supe-
rior performance of the MVD method as compared to a simple vector sum
approach.

15.7. LINE AND SPOT DETECTION

A line in an image could be considered to be composed of parallel, closely spaced
edges. Similarly, a spot could be considered to be a closed contour of edges. This
method of line and spot detection involves the application of scene analysis tech-
niques to spatially relate the constituent edges of the lines and spots. The approach
taken in this chapter is to consider only small-scale models of lines and edges and to
apply the detection methodology developed previously for edges.

Figure 15.1-4 presents several discrete models of lines. For the unit-width line
models, line detection can be accomplished by threshold detecting a line gradient

4
G(j, k) = MAX{|F(j, k) ®H,,(j, k)[} (15.7-1)

m=1

where H, (j, k) is a 3x 3 line detector impulse response array corresponding to a
specific line orientation. Figure 15.7-1 contains two sets of line detector impulse
response arrays, weighted and unweighted, which are analogous to the Prewitt and
Sobel template matching edge detector impulse response arrays. The detection of
ramp lines, as modeled in Figure 15.1-4, requires 5 x5 pixel templates.
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FIGURE 15.7-1. Line detector 3 X 3 impulse response arrays.

Unit-width step spots can be detected by thresholding a spot gradient
G(j, k) = F(j, k) ®H(j, k) (15.7-2)

where H(j, k) is an impulse response array chosen to accentuate the gradient of a
unit-width spot. One approach is to use one of the three types of 3 x3 Laplacian
operators defined by Eq. 15.3-5, 15.3-6 or 15.3-8, which are discrete approximations
to the sum of the row and column second derivatives of an image. The gradient
responses to these impulse response arrays for the unit-width spot model of Figure
15.1-6a are simply replicas of each array centered at the spot, scaled by the spot
height & and zero elsewhere. It should be noted that the Laplacian gradient responses
are thresholded for spot detection, whereas the Laplacian responses are examined
for sign changes (zero crossings) for edge detection. The disadvantage to using
Laplacian operators for spot detection is that they evoke a gradient response for
edges, which can lead to false spot detection in a noisy environment. This problem
can be alleviated by the use of a 3x3 operator that approximates the continuous
cross second derivative 9%/ axzayz. Prewitt (1, p. 126) has suggested the following
discrete approximation:

é 54 (15.7-3)
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The advantage of this operator is that it evokes no response for horizontally or verti-
cally oriented edges, however, it does generate a response for diagonally oriented
edges. The detection of unit-width spots modeled by the ramp model of Figure
15.1-5 requires a 5 x5 impulse response array. The cross second derivative opera-
tor of Eq. 15.7-3 and the separable eight-connected Laplacian operator are decep-
tively similar in appearance; often, they are mistakenly exchanged with one another
in the literature. It should be noted that the cross second derivative is identical to
within a scale factor with the ninth Chebyshev polynomial impulse response array
of Figure 15.3-5.

Cook and Rosenfeld (43) and Zucker et al. (44) have suggested several algo-
rithms for detection of large spots. In one algorithm, an image is first smoothed with
a Wx W low-pass filter impulse response array. Then the value of each point in the
averaged image is compared to the average value of its north, south, east and west
neighbors spaced W pixels away. A spot is marked if the difference is sufficiently
large. A similar approach involves formation of the difference of the average pixel
amplitude in a Wx W window and the average amplitude in a surrounding ring
region of width W.

Chapter 19 considers the general problem of detecting objects within an image by
template matching. Such templates can be developed to detect large spots.
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IMAGE FEATURE EXTRACTION

An image feature is a distinguishing primitive characteristic or attribute of an image.
Some features are natural in the sense that such features are defined by the visual
appearance of an image, while other, artificial features result from specific manipu-
lations of an image. Natural features include the luminance of a region of pixels and
gray scale textural regions. Image amplitude histograms and spatial frequency spec-
tra are examples of artificial features.

Image features are of major importance in the isolation of regions of common
property within an image (image segmentation) and subsequent identification or
labeling of such regions (image classification). Image segmentation is discussed in
Chapter 17. References 1 to 4 provide information on image classification tech-
niques.

This chapter describes several types of image features that have been proposed
for image segmentation and classification. Before introducing them, however, meth-
ods of evaluating their performance are discussed.

16.1. IMAGE FEATURE EVALUATION

There are two quantitative approaches to the evaluation of image features: prototype
performance and figure of merit. In the prototype performance approach for image
classification, a prototype image with regions (segments) that have been indepen-
dently categorized is classified by a classification procedure using various image
features to be evaluated. The classification error is then measured for each feature

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
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set. The best set of features is, of course, that which results in the least classification
error. The prototype performance approach for image segmentation is similar in
nature. A prototype image with independently identified regions is segmented by a
segmentation procedure using a test set of features. Then, the detected segments are
compared to the known segments, and the segmentation error is evaluated. The
problems associated with the prototype performance methods of feature evaluation
are the integrity of the prototype data and the fact that the performance indication is
dependent not only on the quality of the features but also on the classification or seg-
mentation ability of the classifier or segmenter.

The figure-of-merit approach to feature evaluation involves the establishment of
some functional distance measurements between sets of image features such that a
large distance implies a low classification error, and vice versa. Faugeras and Pratt
(5) have utilized the Bhattacharyya distance (3) figure-of-merit for texture feature
evaluation. The method should be extensible for other features as well. The Bhatta-
charyya distance (B-distance for simplicity) is a scalar function of the probability
densities of features of a pair of classes defined as

B(S,,S,) = —ln{f[p(xSl)p(xSZ)]l/zdx} (16.1-1)

where x denotes a vector containing individual image feature measurements with
conditional density p(x|S;). It can be shown (3) that the B-distance is related mono-
tonically to the Chernoff bound for the probability of classification error using a
Bayes classifier. The bound on the error probability is

P<[P(S))P(S,)]" *exp{-B(S,, S,)} (16.1-2)

where P(S;) represents the a priori class probability. For future reference, the Cher-
noff error bound is tabulated in Table 16.1-1 as a function of B-distance for equally
likely feature classes.

For Gaussian densities, the B-distance becomes

%\zl +3,|
1/2

Z+Z,

-1
B(S,.S,) = %(ul—uz)T( ) (u,—uy) +1n (16.1-3)

=%

where u; and X; represent the feature mean vector and the feature covariance matrix
of the classes, respectively. Calculation of the B-distance for other densities is gener-
ally difficult. Consequently, the B-distance figure of merit is applicable only for
Gaussian-distributed feature data, which fortunately is the common case. In prac-
tice, features to be evaluated by Eq. 16.1-3 are measured in regions whose class has
been determined independently. Sufficient feature measurements need be taken so
that the feature mean vector and covariance can be estimated accurately.
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TABLE 16.1-1. Relationship of Bhattacharyya Distance

and Chernoff Error Bound
B(S,,S,) Error Bound
1 1.84x 107!
2 6.77 x 1072
4 9.16 x 107
6 1.24x 107
8 1.68 x 107
10 227x107
12 2.07x107°

16.2. AMPLITUDE FEATURES

The most basic of all image features is some measure of image amplitude in terms of
luminance, tristimulus value, spectral value or other units. There are many degrees
of freedom in establishing image amplitude features. Image variables such as lumi-
nance or tristimulus values may be utilized directly, or alternatively, some linear,
nonlinear, or perhaps non-invertible transformation can be performed to generate
variables in a new amplitude space. Amplitude measurements may be made at spe-
cific image points, e.g., the amplitude F(j, k) at pixel coordinate (j, k), or over a
neighborhood centered at (j, k) . For example, the average or mean image amplitude
ina Wx W pixel neighborhood is given by

MG, k) = Y Y F(+mk+n) (16.2-1)

1
w2
where W = 2w + 1. An advantage of a neighborhood, as opposed to a point measure-
ment, is a diminishing of noise effects because of the averaging process. A disadvantage
is that object edges falling within the neighborhood can lead to erroneous measurements.

The median of pixels within a Wx W neighborhood can be used as an alternative
amplitude feature to the mean measurement of Eq. 16.2-1, or as an additional
feature. The median is defined to be that pixel amplitude in the window for which
one-half of the pixels are equal or smaller in amplitude, and one-half are equal or
greater in amplitude. Another useful image amplitude feature is the neighborhood
standard deviation, which can be computed as

w w 172
S(j. k) =% S LFG+mk+n) MG+ m, k+n)]® (16.2-2)

m=-w n=-w
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(a) Original (b) 7 x 7 pyramid mean

(c) 7 x 7 standard deviation (d) 7 x 7 plus median

FIGURE 16.2-1. Image amplitude features of the washington ir image.

In the literature, the standard deviation image feature is sometimes called the image
dispersion. Figure 16.2-1 shows an original image and the mean, median and stan-
dard deviation of the image computed over a small neighborhood.

The mean and standard deviation of Eqs. 16.2-1 and 16.2-2 can be computed
indirectly in terms of the histogram of image pixels within a neighborhood. This
leads to a class of image amplitude histogram features. Referring to Section 5.4, the
first-order probability distribution of the amplitude of a quantized image may be
defined as

P(b) = PR IF(j, k) = r,] (16.2-3)

where r, denotes the quantized amplitude level for 0 <5 <L - 1. The first-order his-
togram estimate of P(b) is simply
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P(b) ~ 1% (16.2-4)

where M represents the total number of pixels in a neighborhood window centered
about (j, k) , and N(b) is the number of pixels of amplitude r, in the same window.

The shape of an image histogram provides many clues as to the character of the
image. For example, a narrowly distributed histogram indicates a low-contrast
image. A bimodal histogram often suggests that the image contains an object with a
narrow amplitude range against a background of differing amplitude. The following
measures have been formulated as quantitative shape descriptions of a first-order
histogram (6).

Mean:
L-1
Sy=b= bP(b) (16.2-5)
b=0
Standard deviation:
L-1 ) 1/2
Sp=0, = { > (b-b) P(b)} (16.2-6)
b=0
Skewness:
L-1 )
S = —15 Y (b-5)'P(b) (16.2-7)
Op b=0
Kurtosis:
L-1 .
Sg =L 3 (-5)'Pb)-3 (16.2-8)
O b=0
Energy:
L-1
Sy=Y (P(b)]? (16.2-9)
b=0
Entropy:
L-1
Sp=-Y P(b)log,{P(h)} (16.2-10)

b=0
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i,k
FIGURE 16.2-2. Relationship of pixel pairs.

The factor of 3 inserted in the expression for the Kurtosis measure normalizes Sg to
zero for a zero-mean, Gaussian-shaped histogram. Another useful histogram shape
measure is the histogram mode, which is the pixel amplitude corresponding to the
histogram peak (i.e., the most commonly occurring pixel amplitude in the window).
If the histogram peak is not unique, the pixel at the peak closest to the mean is usu-
ally chosen as the histogram shape descriptor.

Second-order histogram features are based on the definition of the joint proba-
bility distribution of pairs of pixels. Consider two pixels F(j, k) and F(m,n) that
are located at coordinates (j, k) and (m, n), respectively, and, as shown in Figure
16.2-2, are separated by r radial units at an angle 6 with respect to the horizontal
axis. The joint distribution of image amplitude values is then expressed as

P(a,b) = Py [F(j,k)=r, F(m,n) =r,] (16.2-11)

where r, and r, represent quantized pixel amplitude values. As a result of the dis-
crete rectilinear representation of an image, the separation parameters (r, 6) may
assume only certain discrete values. The histogram estimate of the second-order dis-
tribution is

P(a, b) = ML) (16.2-12)

where M is the total number of pixels in the measurement window and N(a, b)
denotes the number of occurrences for which F(j, k) = r, and F(m,n) = r,.

If the pixel pairs within an image are highly correlated, the entries in P(a, b) will
be clustered along the diagonal of the array. Various measures, listed below, have
been proposed (6,7) as measures that specify the energy spread about the diagonal of
P(a,b).

Autocorrelation:

L-1 L-1
Si= Y Y abP(ab) (16.2-13)

a=0b=0



Covariance:

where

Inertia:

Absolute value:

Inverse difference:

Energy:

Entropy:
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L-1 L-1
Sc=3Y Y (a-a)b-b)P(ab)
a=0 b=0
L-1 L-1
a = z ZaP(a,b)
a=0 b=0
L-1 L-1
b = Z ZbP(a,b)
a=0 b=0
L-1 L-1 )
S, = Z Z(a—b) P(a, b)
a=0 b=0
L-1 L-1
Sy = z Z\a—b\P(a,b)
a=0 b=0

~ L-1 L-1 P(a,b)
5=y 3 Heb

2
a=0 b=0 L+(a=Db)

L-1 L-1

S¢= Y Y [P@b)

a=0 b=0

L-1 L-1
Sy = - 2 2 P(a, b) log,{P(a, b)}

a=0 b=0

(16.2-14a)

(16.2-14b)

(16.2-14c)

(16.2-15)

(16.2-16)

(16.2-17)

(16.2-18)

(16.2-19)

The utilization of second-order histogram measures for texture analysis is consid-

ered in Section 16.6.
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16.3. TRANSFORM COEFFICIENT FEATURES

The coefficients of a two-dimensional transform of a luminance image specify the
amplitude of the luminance patterns (two-dimensional basis functions) of a trans-
form such that the weighted sum of the luminance patterns is identical to the image.
By this characterization of a transform, the coefficients may be considered to indi-
cate the degree of correspondence of a particular luminance pattern with an image
field. If a basis pattern is of the same spatial form as a feature to be detected within
the image, image detection can be performed simply by monitoring the value of the
transform coefficient. The problem, in practice, is that objects to be detected within
an image are often of complex shape and luminance distribution, and hence do not
correspond closely to the more primitive luminance patterns of most image trans-
forms.

Lendaris and Stanley (8) have investigated the application of the continuous two-
dimensional Fourier transform of an image, obtained by a coherent optical proces-
sor, as a means of image feature extraction. The optical system produces an electric
field radiation pattern proportional to

F(o, (Dy) = J_ZJ_ZF(X, y)exp {—i(®x+ (nyy)} dx dy (16.3-1)

where (o,, ®)) are the image spatial frequencies. An optical sensor produces an out-
put

M (o, 0) = |[Ao, o) (16.3-2)

proportional to the intensity of the radiation pattern. It should be observed that
F(o, 0) and F(x,y) are unique transform pairs, but M (o,, o) is not uniquely
related to F(x, y) . For example, M(w,, o) does not change if the origin of F(x,y)
is shifted. In some applications, the translation invariance of M(w,, ®,) may be a
benefit. Angular integration of M(w,, w,) over the spatial frequency plane pro-
duces a spatial frequency feature that is invariant to translation and rotation. Repre-
senting M(w,, (ny) in polar form, this feature is defined as

N(p) = [;" M(p. 6)do (16.3-3)

2 2 2 . . .
where 8 = arctan{w /o,} and p O+ o). Invariance to changes in scale is an

attribute of the feature

2(0) j: M(p, 0) dp (16.3-4)
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FIGURE 16.3-1. Fourier transform feature masks.

The Fourier domain intensity pattern M(w,, ®,) is normally examined in spe-
cific regions to isolate image features. As an example, Figure 16.3-1 defines regions
for the following Fourier features:

Horizontal slit:

Syom = 7 L;”((’”)”) M(, 0) do, do, (16.3-5)
Vertical slit:
Sym) = [V [T (0, 0,) do,do, (16.3-6)
Ring:
Sy(m) = f"(’””) " ((p,0) dp dO (16.3-7)
Sector:

S, (m) _j j"("’“)M(p, 0) dp do (16.3-8)
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(a) Rectangle (b) Rectangle transform

(c) Ellipse (d) Ellipse transform

(e) Triangle (f) Triangle transform

FIGURE 16.3-2. Discrete Fourier spectra of objects; log magnitude displays.

For a discrete image array F(j, k) , the discrete Fourier transform

F(u,v) =

2=

N-1 N-1 )
D ZF(j,k)exp{_?vm(ux+ vy)} (16.3-9)
j=0 k=0
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for u,v = 0, ..., N-1 can be examined directly for feature extraction purposes. Hor-
izontal slit, vertical slit, ring and sector features can be defined analogous to Eqgs.
16.3-5 to 16.3-8. This concept can be extended to other unitary transforms, such as
the Hadamard and Haar transforms. Figure 16.3-2 presents discrete Fourier trans-
form log magnitude displays of several geometric shapes.

16.4. TEXTURE DEFINITION

Many portions of images of natural scenes are devoid of sharp edges over large
areas. In these areas, the scene can often be characterized as exhibiting a consistent
structure analogous to the texture of cloth. Image texture measurements can be used
to segment an image and classify its segments.

Several authors have attempted qualitatively to define fexture. Pickett (9) states
that “texture is used to describe two dimensional arrays of variations... The ele-
ments and rules of spacing or arrangement may be arbitrarily manipulated, provided
a characteristic repetitiveness remains.” Hawkins (10) has provided a more detailed
description of texture: “The notion of texture appears to depend upon three ingredi-
ents: (1) some local ‘order’ is repeated over a region which is large in comparison to
the order’s size, (2) the order consists in the nonrandom arrangement of elementary
parts and (3) the parts are roughly uniform entities having approximately the same
dimensions everywhere within the textured region.” Although these descriptions of
texture seem perceptually reasonable, they do not immediately lead to simple quan-
titative textural measures in the sense that the description of an edge discontinuity
leads to a quantitative description of an edge in terms of its location, slope angle and
height.

Texture is often qualitatively described by its coarseness in the sense that a
patch of wool cloth is coarser than a patch of silk cloth under the same viewing
conditions. The coarseness index is related to the spatial repetition period of the
local structure. A large period implies a coarse texture; a small period implies a
fine texture. This perceptual coarseness index is clearly not sufficient as a quanti-
tative texture measure, but can at least be used as a guide for the slope of texture
measures; that is, small numerical texture measures should imply fine texture, and
large numerical measures should indicate coarse texture. It should be recognized
that texture is a neighborhood property of an image point. Therefore, texture mea-
sures are inherently dependent on the size of the observation neighborhood.
Because texture is a spatial property, measurements should be restricted to regions
of relative uniformity. Hence it is necessary to establish the boundary of a uniform
textural region by some form of image segmentation before attempting texture
measurements.

Texture may be classified as being artificial or natural. Artificial textures con-
sist of arrangements of symbols, such as line segments, dots and stars placed
against a neutral background. Several examples of artificial texture are presented
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in Figure 16.4-1 (9). As the name implies, natural textures are images of natural
scenes containing semirepetitive arrangements of pixels. Examples include pho-
tographs of brick walls, terrazzo tile, sand and grass. Brodatz (11) has published
an album of photographs of naturally occurring textures. Figure 16.4-2 shows
several natural texture examples obtained by digitizing photographs from the
Brodatz album.

FIGURE 16.4-1. Artificial texture.
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(a) Sand (b) Grass

(¢) Wool (d) Raffia
FIGURE 16.4-2. Brodatz texture fields.

16.5. VISUAL TEXTURE DISCRIMINATION

A discrete stochastic field is an array of numbers that are randomly distributed in
amplitude and governed by some joint probability density (12,13). When converted
to light intensities, such fields can be made to approximate natural textures surpris-
ingly well by control of the generating probability density. This technique is useful
for generating realistic appearing artificial scenes for applications such as airplane
flight simulators. Stochastic texture fields are also an extremely useful tool for
investigating human perception of texture as a guide to the development of texture
feature extraction methods.

In the early 1960s, Julesz (14) attempted to determine the parameters of stochas-
tic texture fields of perceptual importance. This study was extended later by Julesz
et al. (15-17). Further extensions of Julesz’s work have been made by Pollack (18),



548 IMAGE FEATURE EXTRACTION

Spatial
W (J,K) o—— Operator ———o0 F(J,K)
INDEPENDENT o{:} STOCHACTIC
IDENTICALLY TEXTURE
DISTRIBUTED ARRAY
ARRAY

FIGURE 16.5-1. Stochastic texture field generation model.

Purks and Richards (19) and Pratt et al. (13,20). These studies have provided valu-
able insight into the mechanism of human visual perception and have led to some
useful quantitative texture measurement methods.

Figure 16.5-1 is a model for stochastic texture generation. In this model, an array
of independent, identically distributed random variables W(j, k) passes through a
linear or nonlinear spatial operator O{-} to produce a stochastic texture array
F(j, k) . By controlling the form of the generating probability density p(W) and the
spatial operator, it is possible to create texture fields with specified statistical proper-
ties. Consider a continuous amplitude pixel x, at some coordinate (j, k) in F(j, k) .
Let the set {z,,z,, ...,z;} denote neighboring pixels but not necessarily nearest geo-
metric neighbors, raster scanned in a conventional top-to-bottom, left-to-right fash-
ion. The conditional probability density of x, conditioned on the state of its
neighbors is given by

P(Xgs 25 -5 2y)

16.5-1
P(2ys - 2)) ( )

P(xg|zp s 2y) =

The first-order density p(x,) employs no conditioning, the second-order density
p(xp|2y) implies that J = 1, the third-order density implies that J = 2, and so on.

16.5.1. Julesz Texture Fields

In his pioneering texture discrimination experiments, Julesz utilized Markov process
state methods to create stochastic texture arrays independently along rows of the
array. The family of Julesz stochastic arrays are defined below (13).

1. Notation. Let x, = F(j,k—n) denote a row neighbor of pixel x, and let
P(m), form =1, 2,..., M, denote a desired probability generating function.

2. First-order process. Set x, = m for a desired probability function P(m). The
resulting pixel probability is

P(xy) = P(xy=m) = P(m) (16.5-2)
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3. Second-order process. Set F(j,1) =m for P(m)=1/M, and set
Xy = (x; +m)MOD{M}, where the modulus function pMOD{g}=
p—lgx(p+q)] forintegers p and ¢. This gives a first-order probability

P(xy) = - (16.5-3a)

and a transition probability
p(xo‘xl) = P[x, = (x; + m) MOD{M}] = P(m) (16.5-3b)
4. Third-order process. Set F(j,1) = m for P(m) = 1/M, and set F(j,2) = n

for P(n) = 1/M. Choose x, to satisfy 2x;, = (x; +x,+m) MOD{M}. The
governing probabilities then become

P(x,) = All (16.5-4a)
Profx)) = - (16.5-4b)

p(xo‘xl,xz) = P[2xy = (x; +x, + m)MOD {M}] = P(m) (16.5-4¢)

This process has the interesting property that pixel pairs along a row are inde-
pendent, and consequently, the process is spatially uncorrelated.

Figure 16.5-2 contains several examples of Julesz texture field discrimination
tests performed by Pratt et al. (20). In these tests, the textures were generated
according to the presentation format of Figure 16.5-3. In these and subsequent
visual texture discrimination tests, the perceptual differences are often small. Proper
discrimination testing should be performed using high-quality photographic trans-
parencies, prints or electronic displays. The following moments were used as simple
indicators of differences between generating distributions and densities of the sto-
chastic fields.

n = E{xy} (16.5-5a)
2 2

6" = E{[x,—-n]"} (16.5-5b)
o = E{[xqg—mllx; -]} (16.5-5¢)

2
o

9 = E{[Xo—ﬂ][xl—ﬂ][xz—ﬂ]}

3
o

(16.5-5d)
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(a) Different first order (b) Different second order
op =0.289, og = 0.204 op =0.289, og = 0.289
ap =0.250, ag =—0.250

(c) Different third order
op =0.289, og = 0.289
ap = 0.000, ag = 0.000
0p =0.058, 63 =—0.058

FIGURE 16.5-2. Field comparison of Julesz stochastic fields; n, = n; = 0.500.

The examples of Figure 16.5-2a and b indicate that texture field pairs differing
in their first- and second-order distributions can be discriminated. The example of
Figure 16.5-2¢ supports the conjecture, attributed to Julesz, that differences in
third-order, and presumably, higher-order distribution texture fields cannot be
perceived provided that their first- and second-order distributions are pairwise
identical.
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256 256
FIELD A FIELD B ) 256
FIELD B FIELD A |
FIELD A FIELD B 256
[ —
128 J

FIGURE 16.5-3. Presentation format for visual texture discrimination experiments.

16.5.2. Pratt, Faugeras and Gagalowicz Texture Fields

Pratt et al. (20) have extended the work of Julesz et al. (14—17) in an attempt to study
the discrimination ability of spatially correlated stochastic texture fields. A class of
Gaussian fields was generated according to the conditional probability density

_1/2
J+1 T -1
[(275) ‘KJ+1@ exp{—%(VHl—nHl) (K1) (VJ+1_nJ+1)}

P(xg|zps e 2y) =

; -1/2 . - 4
en'K| | expi b, -n) " K) v,y

. (16.5-6a)
where v, =
4 (16.5-6b)
v = |2 (16.5-6¢)
vy

The covariance matrix of Eq. 16.5-6a is of the parametric form
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2l 1 L
0 i 2 3 4 5 6 PIXEL LAG 8

(a) Constrained second-order density

1.0
0.8
0.6

0.4

0.2

ol
6 pixEL LAG 8

(b) Constrained third-order density

FIGURE 16.5-4. Row correlation factors for stochastic field generation. Dashed line, field
A; solid line, field B.

—_
Q
=
<2

J+1 =

R ™ Q
Q
2
<

- - (16.5-7)

where o, B, v, ... denote correlation lag terms. Figure 16.5-4 presents an example of
the row correlation functions used in the texture field comparison tests described
below.

Figures 16.5-5 and 16.5-6 contain examples of Gaussian texture field comparison
tests. In Figure 16.5-5, the first-order densities are set equal, but the second-order
nearest neighbor conditional densities differ according to the covariance function plot
of Figure 16.5-4a. Visual discrimination can be made in Figure 16.5-5, in which the
correlation parameter differs by 20%. Visual discrimination has been found to be
marginal when the correlation factor differs by less than 10% (20). The first- and
second-order densities of each field are fixed in Figure 16.5-6, and the third-order
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(a) @ = 0.750, ag = 0.900 (b) aa = 0.500, o = 0.600

FIGURE 16.5-5. Field comparison of Gaussian stochastic fields with different second-order
nearest neighbor densities; n, = Ng = 0.500,6, = 65 = 0.167.

conditional densities differ according to the plan of Figure 16.5-4b. Visual dis-
crimination is possible. The test of Figure 16.5-6 seemingly provides a counter-
example to the Julesz conjecture. In this test, [pA(xO) = pB(xO)] and
pA(xO, X)) = pB(xO, x;) , but pA(xO,xl,xQ);épB(xO,xl,xQ) . However, the general
second-order density pairs pA(xO, z;) and pB(xO, z;) are not necessarily equal for
an arbitrary neighbor z., and therefore the conditions necessary to disprove
Julesz’s conjecture are violated.

To test the Julesz conjecture for realistically appearing texture fields, it is nec-
essary to generate a pair of fields with identical first-order densities, identical

J58 1 Cabk
O DA

(a) Ba = 0.563, Bg = 0.600 (b) Ba = 0.563, Bg = 0.400

FIGURE 16.5-6. Field comparison of Gaussian stochastic fields with different third-order
nearest neighbor densities; 1, = Mg = 0.500,6, = 6, = 0.167,0, = o, = 0.750.
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na = 0.500, 715 = 0.500
op=0.167, 05 = 0.167
ap = 0.850, ag = 0.850
0 = 0.040, 6 = — 0.027

FIGURE 16.5-7. Field comparison of correlated Julesz stochastic fields with identical first-
and second-order densities, but different third-order densities.

Markovian type second-order densities, and differing third-order densities for every
pair of similar observation points in both fields. An example of such a pair of fields
is presented in Figure 16.5-7 for a non-Gaussian generating process (19). In this
example, the texture appears identical in both fields, thus supporting the Julesz
conjecture.

Gagalowicz has succeeded in generating a pair of texture fields that disprove the
Julesz conjecture (21). However, the counterexample, shown in Figure 16.5-8,
is not very realistic in appearance. Thus, it seems likely that if a statistically based

FIGURE 16.5-8. Gagalowicz counterexample.
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na=0.413, ng =0.412
oa =0.078, o5 = 0.078
ap = 0.91 5, oag = 0.917
0a=1.512, 6 = 0.006

FIGURE 16.5-9. Field comparison of correlated stochastic fields with identical means,
variances and autocorrelation functions, but different nth-order probability densities gener-
ated by different processing of the same input field. Input array consists of uniform random
variables raised to the 256th power. Moments are computed.

texture measure can be developed, it need not utilize statistics greater than
second-order.

Because a human viewer is sensitive to differences in the mean, variance and
autocorrelation function of the texture pairs, it is reasonable to investigate the
sufficiency of these parameters in terms of texture representation. Figure 16.5-9 pre-
sents examples of the comparison of texture fields with identical means, variances
and autocorrelation functions, but different nth-order probability densities. Visual
discrimination is readily accomplished between the fields. This leads to the conclu-
sion that these low-order moment measurements, by themselves, are not always suf-
ficient to distinguish texture fields.

16.6. TEXTURE FEATURES

As noted in Section 16.4, there is no commonly accepted quantitative definition of
visual texture. As a consequence, researchers seeking a quantitative texture measure
have been forced to search intuitively for texture features, and then attempt to evalu-
ate their performance by techniques such as those presented in Section 16.1. The
following subsections describe several texture features of historical and practical
importance. References 22 to 24 provide surveys on image texture feature extrac-
tion. Randen and Husoy (25) have performed a comprehensive study of many tex-
ture feature extraction methods.
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16.6.1. Fourier Spectra Methods

Several studies (8,26,27) have considered textural analysis based on the Fourier
spectrum of an image region, as discussed in Section 16.2. Because the degree of
texture coarseness is proportional to its spatial period, a region of coarse texture
should have its Fourier spectral energy concentrated at low spatial frequencies. Con-
versely, regions of fine texture should exhibit a concentration of spectral energy at
high spatial frequencies. Although this correspondence exists to some degree, diffi-
culties often arise because of spatial changes in the period and phase of texture pat-
tern repetitions. Experiments (10) have shown that there is considerable spectral
overlap of regions of distinctly different natural texture, such as urban, rural and
woodland regions extracted from aerial photographs. On the other hand, Fourier
spectral analysis has proved successful (28,29) in the detection and classification of
coal miner’s black lung disease, which appears as diffuse textural deviations from
the norm.

16.6.2. Edge Detection Methods

Rosenfeld and Troy (30) have proposed a measure of the number of edges in a
neighborhood as a textural measure. As a first step in their process, an edge map
array E(j, k) is produced by some edge detector such that E(j, k) = 1 for a detected
edge and E(j, k) = 0 otherwise. Usually, the detection threshold is set lower than
the normal setting for the isolation of boundary points. This texture measure is
defined as

T(j,k):;z Y Y EGtmk+n (16.6-1)

m=-wn=-w

where W = 2w + 1 is the dimension of the observation window. A variation of this
approach is to substitute the edge gradient G(j, k) for the edge map array in
Eq. 16.6-1. A generalization of this concept is presented in Section 16.6.4.

16.6.3. Autocorrelation Methods

The autocorrelation function has been suggested as the basis of a texture measure
(30). Although it has been demonstrated in the preceding section that it is possible to
generate visually different stochastic fields with the same autocorrelation function,
this does not necessarily rule out the utility of an autocorrelation feature set for nat-
ural images. The autocorrelation function is defined as

Ap(m,n) = zz F(j, k)F(j—m, k—n) (16.6-2)
7k
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for computation over a Wx W window with -T'<m, n <T pixel lags. Presumably, a
region of coarse texture will exhibit a higher correlation for a fixed shift (m, n) than
will a region of fine texture. Thus, texture coarseness should be proportional to the
spread of the autocorrelation function. Faugeras and Pratt (5) have proposed the fol-
lowing set of autocorrelation spread measures:

T T
Sauvy =Y 3 (m-m,)"(n-n,)"Ap(m, n) (16.6-3a)
m=0 n=-T
where
T T
n, = z z mA p(m, n) (16.6-3b)
m=0n=-T
T T
n, = z z nAp(m, n) (16.6-3¢)
m=0n=-T

In Eq. 16.6-3, computation is only over one-half of the autocorrelation function
because of its symmetry. Features of potential interest include the profile spreads
S(2, 0) and S(0, 2), the cross-relation S(1, 1) and the second-degree spread S(2, 2).
Figure 16.6-1 shows perspective views of the autocorrelation functions of the
four Brodatz texture examples (5). Bhattacharyya distance measurements of these
texture fields, performed by Faugeras and Pratt (5), are presented in Table 16.6-1.
These B-distance measurements indicate that the autocorrelation shape features are
marginally adequate for the set of four shape features, but unacceptable for fewer
features. Tests by Faugeras and Pratt (5) verify that the B-distances are low for

(a) Sand (b) Grass

(c) Wool (d) Raffia

FIGURE 16.6-1. Perspective views of autocorrelation functions of Brodatz texture fields.
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TABLE 16.6-1. Bhattacharyya Distance of Texture Feature Sets for Prototype Texture
Fields: Autocorrelation Features

Field Pair Set 14 Set 2° Set 3¢
Grass — sand 5.05 4.29 2.92
Grass — raffia 7.07 5.32 3.57
Grass — wool 2.37 0.21 0.04
Sand — raffia 1.49 0.58 0.35
Sand — wool 6.55 4.93 3.14
Raffia — wool 8.70 5.96 3.78
Average 5.21 3.55 2.30

1. 8(2,0), S(0, 2), S(1, 1), S(2,2).
by, s(1,1), 8(2,2).
3:5(2,2).

the stochastic field pairs of Figure 16.5-9, which have the same autocorrelation
functions but are visually distinct.

16.6.4. Decorrelation Methods

Stochastic texture fields generated by the model of Figure 16.5-1 can be described
quite compactly by specification of the spatial operator 0{-} and the stationary
first-order probability density p(W) of the independent, identically distributed gener-
ating process W(j, k) . This observation has led to a texture feature extraction proce-
dure, developed by Faugeras and Pratt (5), in which an attempt has been made to
invert the model and estimate its parameters. Figure 16.6-2 is a block diagram of
their decorrelation method of texture feature extraction. In the first step of the
method, the spatial autocorrelation function A,(m, n) is measured over a texture
field to be analyzed. The autocorrelation function is then used to develop a whiten-
ing filter, with an impulse response H,,(j, k) , using techniques described in Section
19.2. The whitening filter is a special type of decorrelation operator. It is used to
generate the whitened field

W(j, k) = F(j, k) ®Hy, (j, k) (16.6-4)

This whitened field, which is spatially uncorrelated, can be utilized as an esti-
mate of the independent generating process W(j, k) by forming its first-order
histogram.
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Spatial
—» Autocorrelation

Function Measurement 1
|
3 I
Fo“’ Kl ! »{ Feature L
| i = Extraction
Texture | AlE Texture
Field * Feature
_| Decorrelation _| Histogram Vector
Operator * Measurement [

FIGURE 16.6-2. Decorrelation method of texture feature extraction.

(a) Sand - | (b) ras

(c) Wool (d) Raffia
FIGURE 16.6-3. Whitened Brodatz texture fields.
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FIGURE 16.6-4. First-order histograms of whitened Brodatz texture fields.

If W(j,k) were known exactly, then, in principle, it could be used to identify
o{-} from the texture observation F(j, k) . But, the whitened field estimate
W( J, k) can only be used to identify the autocorrelation function, which, of
course, is already known. As a consequence, the texture generation model
cannot be inverted. However, the shape of the histogram of W( J, k) augmented
by the shape of the autocorrelation function have proved to be useful texture
features.

Figure 16.6-3 shows the whitened texture fields of the Brodatz test images.
Figure 16.6-4 provides plots of their histograms. The whitened fields are observed to
be visually distinctive; their histograms are also different from one another.
Tables 16.6-2 and 16.6-3 list, respectively, the B-distance measurements for
histogram shape features alone, and histogram and autocorrelation shape features.
The B-distance is relatively low for some of the test textures for histogram-only
features. A combination of the autocorrelation shape and histogram shape features
provides good results, as noted in Table 16.6-3.

An obvious disadvantage of the decorrelation method of texture
measurement, as just described, is the large amount of computation involved in
generating the whitening operator. An alternative is to use an approximate
decorrelation operator. Two candidates, investigated by Faugeras and Pratt (5),
are the Laplacian and Sobel gradients. Figure 16.6-5 shows the resultant
decorrelated fields for these operators. The B-distance measurements using the
Laplacian and Sobel gradients are presented in Tables 16.6-2 and 16.6-3. These
tests indicate that the whitening operator is superior, on average, to the
Laplacian operator. But the Sobel operator yields the largest average and largest
minimum B-distances.
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(a) Laplacian, sand (b) Sobel, sand

(c) Laplacian, raffia (d) Sobel, raffia

FIGURE 16.6-5. Laplacian and Sobel gradients of Brodatz texture fields.

16.6.5. Dependency Matrix Methods

Haralick et al. (7) have proposed a number of textural features based on the joint
amplitude histogram of pairs of pixels. If an image region contains fine texture, the
two-dimensional histogram of pixel pairs will tend to be uniform, and for coarse tex-
ture, the histogram values will be skewed toward the diagonal of the histogram.
Consider the pair of pixels F(j, k) and F(m, n) that are separated by r radial units at
an angle 6 with respect to the horizontal axis. Let P(a, b;j, k, r,0) represent the
two-dimensional histogram measurement of an image over some Wx W window
where each pixel is quantized over a range 0 <a, b <L - 1. The two-dimensional his-
togram can be considered as an estimate of the joint probability distribution

P(a,b; j, k,r,0)=PglF(j, k) = a, F(m,n) = b] (16.6-5)
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s

FIGURE 16.6-6. Geometry for measurement of gray scale dependency matrix.

For each member of the parameter set (j, &, r, 0) , the two-dimensional histogram
may be regarded as a LxL array of numbers relating the measured statistical
dependency of pixel pairs. Such arrays have been called a gray scale dependency
matrix or a co-occurrence matrix. Because a LxL histogram array must be
accumulated for each image point (j, k) and separation set (r,0) under
consideration, it is usually computationally necessary to restrict the angular and
radial separation to a limited number of values. Figure 16.6-6 illustrates geometrical
relationships of histogram measurements made for four radial separation points and
angles of 6 = 0, n/4, n/2,3n/4 radians under the assumption of angular symmetry.
To obtain statistical confidence in estimation of the joint probability distribution, the
histogram must contain a reasonably large average occupancy level. This can be
achieved either by restricting the number of amplitude quantization levels or by
utilizing a relatively large measurement window. The former approach results in a
loss of accuracy in the measurement of low-amplitude texture, while the latter
approach causes errors if the texture changes over the large window. A typical
compromise is to use 16 gray levels and a window of about 30 to 50 pixels on each
side. Perspective views of joint amplitude histograms of two texture fields are
presented in Figure 16.6-7.

For a given separation set (r, ), the histogram obtained for fine texture tends to
be more uniformly dispersed than the histogram for coarse texture. Texture coarse-
ness can be measured in terms of the relative spread of histogram occupancy cells
about the main diagonal of the histogram. Haralick et al. (7) have proposed a num-
ber of spread indicators for texture measurement. Several of these have been
presented in Section 16.2. As an example, the inertia function of Eq. 16.2-15 results
in a texture measure of the form

L-1 L-1
TGk r,8) = 3 3 (a-b)’P(a,bjk r,0) (16.6-6)
a=0 b=0
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(a) Grass (b) Dependency matrix, grass

(d) Dependency matrix, ivy

FIGURE 16.6-7. Perspective views of gray scale dependency matrices for r = 4,0 = 0.

If the textural region of interest is suspected to be angularly invariant, it is reason-
able to average over the measurement angles of a particular measure to produce the
mean textural measure (23)

MGk, r) = Nl S 7.k r.9) (16.6-7)
L)

where the summation is over the angular measurements, and N, represents the num-
ber of such measurements. Similarly, an angular-independent texture variance may
be defined as

ViGiker) = <= 3 (TG k. 7, 0) = Mok, 1)) (16.6-8)
6 o
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FIGURE 16.6-8. Laws microstructure texture feature extraction method.

Another useful measurement is the angular independent spread defined by

S(j, k,r) = MAX{T(j, k, r,0)} —MIN{T(j, k,1,0)} (16.6-9)
0 0

16.6.6. Microstructure Methods

Examination of the whitened, Laplacian and Sobel gradient texture fields of Figures
16.6-3 and 16.6-5 reveals that they appear to accentuate the microstructure of the
texture. This observation was the basis of a texture feature extraction scheme devel-
oped by Laws (31), and described in Figure 16.6-8. Laws proposed that the set of
nine 3 x 3 pixel impulse response arrays H,(j, k) shown in Figure 16.6-9, be con-
volved with a texture field to accentuate its microstructure. The ith microstructure
array is defined as

M;(j, k) = F(j, k) ®H,(j, k) (16.6-10)

Then, the energy of these microstructure arrays is measured by forming their mov-
ing window standard deviation T,(j, k) according to Eq. 16.2-2, over a window that
contains a few cycles of the repetitive texture.
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FIGURE 16.6-9. Laws microstructure impulse response arrays.

Figure 16.6-10 shows a mosaic of several Brodatz texture fields that have been
used to test the Laws feature extraction method. Note that some of the texture fields
appear twice in the mosaic. Figure 16.6-11 illustrates the texture arrays 7,(j, k) . In
classification tests of the Brodatz textures performed by Laws (31), the correct tex-
ture was identified in nearly 90% of the trials.

Many of the microstructure detection operators of Figure 16.6-9 have been
encountered previously in this book: the pyramid average, the Sobel horizontal and
vertical gradients, the weighted line horizontal and vertical gradients and the cross
second derivative. The nine Laws operators form a basis set that can be generated

from all outer product combinations of the three vectors

1

1
Vl—g 2
L1
1

1
V2=§ 0
| -1
1

1
V3—§ -2
1

(16.6-11a)

(16.6-11b)

(16.6-11c)
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FIGURE 16.6-10. Mosaic of Brodatz texture fields.
Alternatively, the 3 x3 Chebyshev basis set proposed by Haralick (32) for edge

detection, as described in Section 16.3.3, can be used for texture measurement. The
first Chebyshev basis vector is

v, =

Wi

1
) (16.6-12)
1

The other two are identical to Eqgs. 16.6-11b and 16.6-11c. The Laws procedure
can be extended by using larger size Chebyshev arrays or other types of basis
arrays (33).

Ade (34) has suggested a microstructure texture feature extraction procedure
similar in nature to the Laws method, which is based on a principal components
transformation of a texture sample. In the development of this transformation, pixels
within a 3 x 3 neighborhood are regarded as being column stacked into a 9 x 1 vec-
tor, as shown in Figure 16.6-12a. Then a 9 x9 covariance matrix K that specifies all
pairwise covariance relationships of pixels within the stacked vector is estimated
from a set of prototype texture fields. Next, a 9 x9 transformation matrix T that
diagonalizes the covariance matrix K is computed, as described in Eq. 5.5-8.
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(a) Laws no. 1 (b) Laws no. 2
(c) Laws no. 3 (d) Laws no. 4
(e) Laws no. 5 (f) Laws no. 6

FIGURE 16.6-11. Laws microstructure texture features.

569
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(g) Laws no. 7 (h) Laws no. 8

(/) Laws no. 9

FIGURE 16.6-11. (continued) Laws microstructure texture features.

The rows of T are eigenvectors of the principal components transformation.
Each eigenvector is then cast into a 3 x 3 impulse response array by the destack-
ing operation of Eq. 5.3-4. The resulting nine eigenmatrices are then used in
place of the Laws fixed impulse response arrays, as shown in Figure 16.6-8. Ade
(34,35) has computed eigenmatrices for a Brodatz texture field and a cloth sam-
ple. Interestingly, these eigenmatrices are similar in structure to the Laws
arrays.

Manian et al. (36) have also developed a variant of the Laws microstructure
method. With reference to Figure 16.6-8, they use the six 2x2 impulse
response arrays, called logical operators, shown in Figure 6.6-13. The standard
deviation measurement is over a 5x35 pixel window. Next, features are
extracted from the standard deviation measurements using the four zonal filter
feature masks of Figure 16.3-1.They report good classification results for the
Brodatz texture set (36).
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(a) 3 x 3 neighborhood

(b) Pixel relationships
FIGURE 16.6-12. Neighborhood covariance relationships.

11 10 10
1 -1 11 11
1 0] 0 0] 0 1]
0 1 0 1 11

FIGURE 16.6-13. Logical operator impulse response arrays.

16.6.7. Gabor Filter Methods

The microstructure method of texture feature extraction is not easily scalable. Micro-
structure arrays must be derived to match the inherent periodicity of each texture to be
characterized. Bovik et al. (37-39) have utilized Gabor filters (40) as an efficient means
of scaling the impulse response function arrays of Figure 16.6-8 to the texture periodicity.



572 IMAGE FEATURE EXTRACTION

A two-dimensional Gabor filter is a complex field sinusoidal grating that is
modulated by a two-dimensional Gaussian function in the spatial domain (38).
Gabor filters have tunable orientation and radial frequency passbands and tunable
center frequencies. A special case of the Gabor filter is the daisy petal filter, in
which the filter lobes radiate from the origin of the spatial frequency domain. The
continuous domain impulse response function of the daisy petal Gabor filter is
given by (38)

H(x,y) = G(x",y")exp {2miFx"} (16.6-12)

where F is a scaling factor and i = ./~1. The Gaussian component is

2 2
Glx,y) = — zeXp{—M} (16.6-13)

2TAG 202

where ¢ is the Gaussian spread factor and A is the aspect ratio between the x and y
axes. The rotation of coordinates is specified by

(x,y") = (xcosd +ysind, —xsind + y cos ) (16.6-14)

where ¢ is the orientation angle with respect to the x axis. The continuous domain
filter transfer function is given by (38)

H(u, v) = exp{-2n°6[(u' = F)*+ ()1} (16.6-15)

Figure 16.6-14 shows the relationship between the real and imaginary compo-
nents of the impulse response array and the magnitude of the transfer
function (38). The impulse response array is composed of sine-wave gratings
within the elliptical region. The half energy profile of the transfer function is
shown in gray.

Grigorescu et al. (41) have performed a comprehensive comparison of Gabor
filter texture features. In the comparative study of texture classification methods
by Randen and Husoy (25), the Gabor filter method, like many other methods,
gave mixed results. It performed well on some texture samples, but poorly on
others.
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y

i
‘ ! X X

(a) Real part of H(x, y) (b) Imaginary part of H(x, y)

(o) H(u, v)
FIGURE 16.6-14. Relationship between impulse response array and transfer function of a
Gabor filter.

16.6.8. Transform and Wavelet Methods

The Fourier spectra method of texture feature extraction can be generalized to other
unitary transforms. The concept is straightforward. A N x N texture sample is subdi-
vided into M x M pixel arrays, and a unitary transform is performed for each array
yielding a M*x 1 feature vector. The window size needs to large enough to contain
several cycles of the texture periodicity.

Mallat (42) has used the discrete wavelet transform, based on Haar wavelets
(see Section 8.4.2) as a means of generating texture feature vectors. Improved
results have been obtained by Unser (43), who has used a complete Haar-based
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wavelet transform for an 8 x8 window. In their comparative study of texture
classification, Randen and Husoy (25) used several types of Daubechies trans-
forms up to size 10 (see Section §.4-4).

The transform and wavelet methods provide reasonably good classification for
many texture samples (25). However, the computational requirement is high for
large windows.

16.6.9. Singular-Value Decomposition Methods

Ashjari (44) has proposed a texture measurement method based on the singular-
value decomposition of a texture sample. In this method, a N x N texture sample is
treated as a Nx N matrix X, and the amplitude-ordered set of singular values s(n)
forn=1,2,..., Nis computed, as described in Appendix A1.2. If the elements of X
are spatially unrelated to one another, the singular values tend to be uniformly dis-
tributed in amplitude. On the other hand, if the elements of X are highly structured,
the singular-value distribution tends to be skewed such that the lower-order singular
values are much larger than the higher-order ones.

Figure 16.6-15 contains measurements of the singular-value distributions of the
four Brodatz textures performed by Ashjari (44). In this experiment, the 512 x 512
pixel texture originals were first subjected to a statistical rescaling process to pro-
duce four normalized texture images whose first-order distributions were Gauss-
ian with identical moments. Next, these normalized texture images were
subdivided into 196 non-overlapping 32 x 32 pixel blocks, and an SVD transfor-
mation was taken of each block. Figure 16.6-14 is a plot of the average value of
each singular value. The shape of the singular-value distributions can be quanti-
fied by the one-dimensional shape descriptors defined in Section 16.2. Table 16.6-
4 lists Bhattacharyya distance measurements obtained by Ashjari (44) for the
mean, standard deviation, skewness and kurtosis shape descriptors. For this exper-
iment, the B-distances are relatively high, and therefore good classification results
should be expected.

TABLE 16.6-4. Bhattacharyya Distance of SVD Texture
Feature Sets for Prototype Texture Fields: SVD Features

Field Pair
Grass — sand 1.25
Grass — raffia 242
Grass — wool 3.31
Sand - raffia 6.33
Sand — wool 2.56
Raftia — wool 9.24

Average 4.19
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FIGURE 16.6-15. Singular-value distributions of Brodatz texture fields.
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IMAGE SEGMENTATION

Segmentation of an image entails the division or separation of the image into regions
of similar attribute. The most basic attribute for segmentation is image luminance
amplitude for a monochrome image and color components for a color image. Image
edges and texture are also useful attributes for segmentation.

The definition of segmentation adopted in this chapter is deliberately restrictive;
no contextual information is utilized in the segmentation. Furthermore, segmenta-
tion does not involve classifying each segment. The segmenter only subdivides an
image; it does not attempt to recognize the individual segments or their relationships
to one another.

There is no theory of image segmentation. As a consequence, no single standard
method of image segmentation has emerged. Rather, there are a collection of ad hoc
methods that have received some degree of popularity. Because the methods are ad
hoc, it would be useful to have some means of assessing their performance. Haralick
and Shapiro (1) have established the following qualitative guideline for a good
image segmentation: “Regions of an image segmentation should be uniform and
homogeneous with respect to some characteristic such as gray tone or texture.
Region interiors should be simple and without many small holes. Adjacent regions
of a segmentation should have significantly different values with respect to the char-
acteristic on which they are uniform. Boundaries of each segment should be simple,
not ragged, and must be spatially accurate.” Unfortunately, no quantitative image
segmentation performance metric has been developed.

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.
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Several generic methods of image segmentation are described in the following
sections. Because of their complexity, it is not feasible to describe all the details of
the various algorithms. Early surveys of image segmentation methods are given in
References 2 to 8.

17.1. AMPLITUDE SEGMENTATION

This section considers several image segmentation methods based on the thresholding
of luminance or color components of an image. An amplitude projection segmentation
technique is also discussed.

17.1.1. Bilevel Luminance Thresholding

Many images can be characterized as containing some object of interest of reason-
ably uniform brightness placed against a background of differing brightness. Typical
examples include handwritten and typewritten text, microscope biomedical samples
and airplanes on a runway. For such images, luminance is a distinguishing feature
that can be utilized to segment the object from its background. If an object of inter-
est is white against a black background, or vice versa, it is a trivial task to set a mid
gray threshold to segment the object from the background. Practical problems occur,
however, when the observed image is subject to noise and when both the object and
background assume some broad range of gray scales. Another frequent difficulty is
that the background may be nonuniform.

Figure 17.1-1a shows a digitized typewritten text consisting of dark letters
against a lighter background. A gray scale histogram of the text is presented in
Figure 17.1-1b. The expected bimodality of the histogram is masked by the rela-
tively large percentage of background pixels. Figure 17.1-1c to e are threshold
displays in which all pixels brighter than the threshold are mapped to unity dis-
play luminance and all the remaining pixels below the threshold are mapped to
the zero level of display luminance. The photographs illustrate a common prob-
lem associated with image thresholding. If the threshold is set too low, portions
of the letters are deleted (the stem of the letter “p” is fragmented). Conversely, if
the threshold is set too high, object artifacts result (the loop of the letter “e” is
filled in).

Several analytic approaches to the setting of a luminance threshold have been
proposed (3,9). One method is to set the gray scale threshold at a level such that
the cumulative gray scale count matches an a priori assumption of the gray scale
probability distribution (10). For example, it may be known that black characters
cover 25% of the area of a typewritten page. Thus, the threshold level on the
image might be set such that the quartile of pixels with the lowest luminance are
judged to be black. Another approach to luminance threshold selection is to set
the threshold at the minimum point of the histogram between its bimodal peaks
(11). Determination of the minimum is often difficult because of the jaggedness
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(a) Gray scale text (b) Histogram
(c) High threshold, T=0.67 (d) Medium threshold, T=0.50
(e) Low threshold, T=0.10 (f) Histogram, Laplacian mask

FIGURE 17.1-1. Luminance thresholding segmentation of typewritten text.
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of the histogram. A solution to this problem is to fit the histogram values
between the peaks with some analytic function and then obtain its minimum by
differentiation. For example, let y and x represent the histogram ordinate and
abscissa, respectively. Then the quadratic curve

y = ax’ +bx+c (17.1-1)

where a, b, and c are constants provides a simple histogram approximation in the
vicinity of the histogram valley. The minimum histogram valley occurs for
x = —b/2a . Papamarkos and Gatos (12) have extended this concept for threshold
selection.

A global threshold can be determined by minimization of some difference mea-
sure between an image to be segmented and its test segments. Otsu (13) has devel-
oped a thresholding algorithm using the Euclidean difference. Sahoo et al. (6)
have reported that the Otsu method is the best global thresholding technique
among those that they tested.

Weska et al. (14) have suggested the use of a Laplacian operator to aid in
luminance threshold selection. As defined in Eq. 15.3-1, the Laplacian forms
the spatial second partial derivative of an image. Consider an image region in
the vicinity of an object in which the luminance increases from a low plateau
level to a higher plateau level in a smooth ramp like fashion. In the flat regions
and along the ramp, the Laplacian is zero. Large positive values of the Lapla-
cian will occur in the transition region from the low plateau to the ramp; large
negative values will be produced in the transition from the ramp to the high pla-
teau. A gray scale histogram formed of only those pixels of the original image
that lie at coordinates corresponding to very high or low values of the Laplacian
tends to be bimodal with a distinctive valley between the peaks. Figure 17.1-1f
shows the histogram of the text image of Figure 17.1-1a after the Laplacian
mask operation.

If the background of an image is nonuniform, it often is necessary to adapt the
luminance threshold to the mean luminance level (15,16). This can be accom-
plished by subdividing the image into small blocks and determining the best thresh-
old level for each block by the methods discussed previously. Threshold levels for
each pixel may then be determined by interpolation between the block centers.
Yankowitz and Bruckstein (17) have proposed an adaptive thresholding method in
which a threshold surface is obtained by interpolating an image only at points
where its gradient is large.

17.1.2. Multilevel Luminance Thresholding

Effective segmentation can be achieved in some classes of images by a recursive
multilevel thresholding method suggested by Tomita et al. (18). In the first stage
of the process, the image is thresholded to separate brighter regions from darker
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(a) Original (b) Original histogram
(c) Segment 0 (d) Segment 0 histogram
(e) Segment 1 (f) Segment 1 histogram

FIGURE 17.1-2. Multilevel luminance thresholding image segmentation of the peppers
mon image; first-level segmentation.
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(a) Segment 00 (b) Segment 00 histogram

(c) Segment 01 (d) Segment 01 histogram

FIGURE 17.1-3. Multilevel luminance thresholding image segmentation of the peppers
mon image; second-level segmentation, O branch.

regions by locating a minimum between luminance modes of the histogram. Then
histograms are formed of each of the segmented parts. If these histograms are not
unimodal, the parts are thresholded again. The process continues until the histogram
of a part becomes unimodal. Figures 17.1-2 to 17.1-4 provide an example of this
form of amplitude segmentation in which the peppers image is segmented into four
gray scale segments.

Several methods have been proposed for the selection of multilevel thresholds.
The methods of Reddi et al. (19) and Kapur et al. (20) are based upon image histo-
rams. References 21 to 23 are more recent proposals for threshold selection.
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(a) Segment 10 (b) Segment 10 histogram

(c) Segment 11 (d) Segment 11 histogram

FIGURE 17.1-4. Multilevel luminance thresholding image segmentation of the peppers
mon image; second-level segmentation, 1 branch.

17.1.3. Multilevel Color Component Thresholding

The multilevel luminance thresholding concept can be extended to the segmentation
of color and multispectral images. Ohlander et al. (24,25) have developed a segmen-
tation scheme for natural color images based on multidimensional thresholding of
color images represented by their RGB color components, their luma/chroma YIQ
components and by a set of nonstandard color components, loosely called intensity,
hue and saturation. Figure 17.1-5 provides an example of the property histograms
of these nine color components for a scene. The histograms, have been measured
over those parts of the original scene that are relatively devoid of texture: the non-
busy parts of the scene. This important step of the segmentation process is necessary
to avoid false segmentation of homogeneous textured regions into many isolated
parts. If the property histograms are not all unimodal, an ad hoc procedure is
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invoked to determine the best property and the best level for thresholding of that
property. The first candidate is image intensity. Other candidates are selected on a
priority basis, depending on contrast level and location of the histogram modes.
After a threshold level has been determined, the image is subdivided into its seg-
mented parts. The procedure is then repeated on each part until the resulting
property histograms become unimodal or the segmentation reaches a reasonable
stage of separation under manual surveillance. Ohlander’s segmentation technique
using multidimensional thresholding aided by texture discrimination has proved
quite effective in simulation tests. However, a large part of the segmentation control
has been performed by a human operator; human judgment, predicated on trial
threshold setting results, is required for guidance.

FIGURE 17.1-5. Typical property histograms for color image segmentation.
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In Ohlander’s segmentation method, the nine property values are obviously
interdependent. The YIQ and intensity components are linear combinations of
RGB; the hue and saturation measurements are nonlinear functions of RGB. This
observation raises several questions. What types of linear and nonlinear transfor-
mations of RGB are best for segmentation? Ohta et al. (26) suggest an approxima-
tion to the spectral Karhunen—Loeve transform. How many property values should
be used? What is the best form of property thresholding? Perhaps answers to
these last two questions maybe forthcoming from a study of clustering techniques
in pattern recognition (27).

Property value histograms are really the marginal histograms of a joint histo-
gram of property values. Clustering methods can be utilized to specify multidi-
mensional decision boundaries for segmentation. This approach permits utilization
of all the property values for segmentation and inherently recognizes their respec-
tive cross correlation. The following section discusses clustering methods of image
segmentation.

17.1.4. Amplitude Projection

Image segments can sometimes be effectively isolated by forming the average
amplitude projections of an image along its rows and columns (28,29). The horizon-
tal (row) and vertical (column) projections are defined as

J
H(k) = % Y F(.k) (17.1-2)
j=1
and
| K
Vi) = % > F(.k) (17.1-3)
k=1

Figure 17.1-6 illustrates an application of gray scale projection segmentation of an
image. The rectangularly shaped segment can be further delimited by taking projec-
tions over oblique angles.

17.2. CLUSTERING SEGMENTATION

One of the earliest examples of image segmentation, by Haralick and Kelly (30)
using data clustering, was the subdivision of multispectral aerial images of agricul-
tural land into regions containing the same type of land cover. The clustering seg-
mentation concept is simple; however, it is usually computationally intensive.
Consider a vector x = [x},x,, ..., xN]T of measurements at each pixel coordinate
(j, k) in an image. The measurements could be point multispectral values, point color
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components or derived color components, as in the Ohlander approach described
previously, or they could be neighborhood feature measurements such as the moving
window mean, standard deviation and mode, as discussed in Section 16.2. If the
measurement set is to be effective for image segmentation, data collected at various
pixels within a segment of common attribute should be similar. That is, the data
should be tightly clustered in an N-dimensional measurement space. If this condition
holds, the segmenter design task becomes one of subdividing the N-dimensional
measurement space into mutually exclusive compartments, each of which envelops
typical data clusters for each image segment. Figure 17.2-1 illustrates the concept
for two features. In the segmentation process, if a measurement vector for a pixel
falls within a measurement space compartment, the pixel is assigned the segment
name or label of that compartment.

Coleman and Andrews (31) have developed a robust and relatively efficient
image segmentation clustering algorithm. Figure 17.2-2 is a flowchart that describes
a simplified version of the algorithm for segmentation of monochrome images. The

B W
(a) Row projection (b) Original
W
M‘;-ﬁu—wr s }- B
(c) Segmentation (d) Column projection

FIGURE 17.1-6. Gray scale projection image segmentation of a toy tank image.
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first stage of the algorithm involves feature computation. In one set of experiments,
Coleman and Andrews used 12 mode measurements in square windows of size 1, 3, 7
and 15 pixels. The next step in the algorithm is the clustering stage, in which the opti-
mum number of clusters is determined along with the feature space center of each
cluster. In the segmenter, a given feature vector is assigned to its closest cluster center.

Xa

CLASS 1

CLASS 2

- LINEAR
CLASS 3 CLASSIFICATION
BOUNDARY

X4

FIGURE 17.2-1. Data clustering for two feature measurements.

CLUSTER
COMPUTATION
FEATURE l K-MEANS
G ] @ —
ORIGINAL | EXTRACTION | FEATURE SEGMENTOR SEGMENTED
IMAGE VECTOR IMAGE

ARRAY

FIGURE 17.2-2. Simplified version of Coleman—Andrews clustering image segmentation
method.

The cluster computation algorithm begins by establishing two initial trial cluster
centers. All feature vectors of an image are assigned to their closest cluster center.
Next, the number of cluster centers is successively increased by one, and a cluster-
ing quality factor B is computed at each iteration until the maximum value of B is
determined. This establishes the optimum number of clusters. When the number of
clusters is incremented by one, the new cluster center becomes the feature vector
that is farthest from its closest cluster center. The B factor is defined as

B = tr{Sy} tr{Sz} (17.2-1)

where S, and S, are the within- and between-cluster scatter matrices, respec-
tively, and tr{-} denotes the trace of a matrix. The within-cluster scatter matrix is
computed as
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1 K
=z Z

1\% 2 (xi—uk)(xi—uk)T (17.2-2)
1 X; € Sy

where K is the number of clusters, M, is the number of vector elements in the kth
cluster, x; is a vector element in the kth cluster, u, is the mean of the kth cluster and
S is the set of elements in the kth cluster. The between-cluster scatter matrix is
defined as

K
= Il( z (uk—uo)(uk—uO)T (17.2-3)
k=1

where u,, is the mean of all of the feature vectors as computed by
L M
= Z X; (17.2-4)

where M denotes the number of pixels to be clustered. Coleman and Andrews (31)
have obtained subjectively good results for their clustering algorithm in the segmen-
tation of monochrome and color images.

17.3. REGION SEGMENTATION

The amplitude and clustering methods described in the preceding sections are based
on point properties of an image. The logical extension, as first suggested by Muerle
and Allen (32), is to utilize spatial properties of an image for segmentation.

17.3.1. Region Growing

Region growing is one of the conceptually simplest approaches to image segmenta-
tion; neighboring pixels of similar amplitude are grouped together to form a
segmented region. However, in practice, constraints, some of which are reasonably
complex, must be placed on the growth pattern to achieve acceptable results.

Brice and Fenema (33) have developed a region-growing method based on a set
of simple growth rules. In the first stage of the process, pairs of pixels are combined
together in groups called atomic regions if they are of the same amplitude and are
four-connected. Two heuristic rules are next invoked to dissolve weak boundaries
between atomic boundaries. Referring to Figure 17.3-1, let R; and R, be two
adjacent regions with perimeters Py and P,, respectively, which have previously
been merged. After the initial stages of region growing, a region may contain previ-
ously merged subregions of different amplitude values. Also, let C denote the
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length of the common boundary and let D represent the length of that portion of C
for which the amplitude difference Y across the boundary is smaller than a signifi-
cance factor €,. The regions R} and R, are then merged if

D . (17.3-1)
MIN{P,, P,}

where €, is a constant typically set at €, = % This heuristic prevents merger of
adjacent regions of the same approximate size, but permits smaller regions to be
absorbed into larger regions. The second rule merges weak common boundaries
remaining after application of the first rule. Adjacent regions are merged if

> g, (17.3-2)

Ao

where €, is a constant set at about &, =
to overmerge regions.

i . Application of only the second rule tends

REGION R, COMMON
BOUNDARY C

FIGURE 17.3-1. Region-growing geometry.

The Brice and Fenema region growing method provides reasonably accurate
segmentation of simple scenes with few objects and little texture (33-35) but does
not perform well on more complex scenes. Yakimovsky (36) has attempted to
improve the region-growing concept by establishing merging constraints based
on estimated Bayesian probability densities of feature measurements of each
region.

Adams and Bischof (37) have proposed a seeded region growing algorithm in
which a user manually selects a set of seeds s, s,, ..., s, that are placed in areas of
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visual homogeneity. The seeds can be single pixels for nearly noise free-images, or
they can be small clusters of pixels to provide some degree of noise tolerance for
noisy images. Then, conventional region growing proceeds with one new pixel
added to each of the n seeded regions. The process proceeds until adjacent regions
meet at a common boundary.

An adaptive region growing algorithm has been developed by Chang and Li
(38). With this algorithm, an unspecified feature histogram analysis is performed
on each pair of regions, which are candidates for merging. If the feature means of
the candidate regions are within a dynamic tolerance range, the candidates are
merged.

Hojjatoleslami and Kittler (39) have proposed a novel region growing method in
which a single unassigned pixel is added to an existing region if a pair of contrast
measures are satisfied. Consider an existing region, which is surrounded by unas-
signed pixels or pixels from some other region. The internal boundary of the region
is the set of connected outermost pixels of the region. The current boundary is the
set of connected pixels adjacent to the internal boundary. In Figure 17.3-2, the inter-
nal boundary is formed by connected pixels just inside the solid line while the cur-
rent boundary is formed by connected pixels just outside the solid line. The average
contrast measure is defined to be the difference between the average grey level of
the region and the average of its current boundary pixels. The peripheral contrast
measure is defined as the difference of the grey level average of the internal bound-
ary and the average of the current boundary. Together, these two contrast measures
determine if a pixel is to be included into the current region. A single border pixel
will be subsumed into the current region if it is the maximum of its nearest neigh-
bors and if the last local maximum of the peripheral contrast occurs before the max-
imum of the average contrast measure.

Most region growing techniques have an inherent dependence upon the location
of seeds for each region. As a consequence, the segmented result is sensitive to the
location and ordering of seeds. Wan and Higgins (40) have proposed a set of region
growing algorithms, called symmetric region growing, which are insensitive to the
location of seeds.

17.3.2. Split and Merge

Split and merge image segmentation techniques (41) are based on a quad tree data
representation whereby a square image segment is broken (split) into four quadrants
if the original image segment is nonuniform in attribute. If four neighboring squares
are found to be uniform, they are replaced (merge) by a single square composed of
the four adjacent squares.

In principle, the split and merge process could start at the full image level and
initiate split operations. This approach tends to be computationally intensive.
Conversely, beginning at the individual pixel level and making initial merges has
the drawback that region uniformity measures are limited at the single pixel
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level. Initializing the split and merge process at an intermediate level enables the
use of more powerful uniformity tests without excessive computation.

The simplest uniformity measure is to compute the difference between the largest
and smallest pixels of a segment. Fukada (42) has proposed the segment variance as
a uniformity measure. Chen and Pavlidis (43) suggest more complex statistical mea-
sures of uniformity. The basic split and merge process tends to produce rather
blocky segments because of the rule that square blocks are either split or merged.
Horowitz and Pavlidis (44) have proposed a modification of the basic process
whereby adjacent pairs of regions are merged if they are sufficiently uniform. Tyagi
and Bayoumi (45) have developed a parallel processing architecture in which split
and merge operations can be performed in parallel.

17.3.3. Watershed

Topographic and hydrology concepts have proved useful in the development of
region segmentation methods (46—49). In this context, a monochrome image is con-
sidered to be an altitude surface in which high-amplitude pixels correspond to ridge
points, and low-amplitude pixels correspond to valley points. If a drop of water
were to fall on any point of the altitude surface, it would move to a lower altitude
until it reached a local altitude minimum. The accumulation of water in the vicinity

L ——

Figure 17.3-2. Rainfall watershed.
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of a local minimum is called a catchment basin. All points that drain into a com-
mon catchment basin are part of the same watershed. A valley is a region that is
surrounded by a ridge. A ridge is the loci of maximum gradient of the altitude
surface.

There are two basic algorithmic approaches to the computation of the watershed
of an image: rainfall and flooding.

In the rainfall approach, local minima are found throughout the image. Each
local minima is given a unique tag. Adjacent local minima are combined with a
unique tag. Next, a conceptual water drop is placed at each untagged pixel. The drop
moves to its lower-amplitude neighbor until it reaches a tagged pixel, at which time
it assumes the tag value. Figure 17.3-2 illustrates a section of a digital image encom-
passing a watershed in which the local minimum pixel is black and the dashed line
indicates the path of a water drop to the local minimum.

In the flooding approach, conceptual single pixel holes are pierced at each local
minima, and the amplitude surface is lowered into a large body of water. The water
enters the holes and proceeds to fill each catchment basin. If a basin is about to over-
flow, a conceptual dam is built on its surrounding ridge line to a height equal to the
highest- altitude ridge point. Figure 17.3-3 shows a profile of the filling process of a
catchment basin (50). Figure 17.3-4 is an example of watershed segmentation pro-
vided by Moga and Gabbouj (51).

/ DAM

FIGURE 17.3-3. Profile of catchment basin filling.
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(a) Original (b) Segmentation

FIGURE 17.3-4. Watershed image segmentation of the peppers_mon image. Courtesy of
Alina N. Moga and M. Gabbouj, Tampere University of Technology, Finland.

Simple watershed algorithms tend to produce results that are over segmented
(52). Najman and Schmitt (50,53,54) have applied morphological methods in their
watershed algorithm to reduce over segmentation. Wright and Acton (55) have per-
formed watershed segmentation on a pyramid of different spatial resolutions to
avoid over segmentation. Jackway (56) has investigated gradient watersheds. Refer-
ences 57 to 61, published since the manuscript of the third edition of this book was
completed, describe extensions and improvements to the basic watershed image seg-
mentation method.

17.4. BOUNDARY SEGMENTATION

It is possible to segment an image into regions of common attribute by detecting the
boundary of each region for which there is a significant change in attribute across
the boundary. Boundary detection can be accomplished by means of edge detection
as described in Chapter 15. Figure 17.4-1 illustrates the segmentation of a projectile
from its background. In this example, a 11 x 11 derivative of Gaussian edge detec-
tor is used to generate the edge map of Figure 17.4-1b. Morphological thinning of
this edge map results in Figure 17.4-1c. The resulting boundary appears visually to
be correct when overlaid on the original image. If an image is noisy or if its region
attributes differ by only a small amount between regions, a detected boundary may
often be broken. Edge linking techniques can be employed to bridge short gaps in
such a region boundary.
The following sections describe a number of boundary segmentation techniques.
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(a) Original

| o

(b) Edge map () Thinned edge map

FIGURE 17.4-1. Boundary detection image segmentation of the projectile image.

17.4.1. Curve-Fitting Edge Linking

In some instances, edge map points of a broken segment boundary can be linked
together to form a closed contour by curve-fitting methods. If a priori information is
available as to the expected shape of a region in an image (e.g., a rectangle or a cir-
cle), the fit may be made directly to that closed contour. For more complex-shaped
regions, as illustrated in Figure 17.4-2, it is usually necessary to break up the sup-
posed closed contour into chains with broken links. One such chain, shown in
Figure 17.4-2 starting at point A and ending at point B, contains a single broken link.
Classical curve-fitting methods (41) such as Bezier polynomial or spline fitting can
be used to fit the broken chain.

In their book, Duda and Hart (62) credit Forsen as being the developer of a sim-
ple piecewise linear curve-fitting procedure called the iterative endpoint fit. In the
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first stage of the algorithm, illustrated in Figure 17.4-3, data endpoints A and B are
connected by a straight line. The point of greatest departure from the straight-line
(point C) is examined. If the separation of this point is too large, the point becomes
an anchor point for two straight-line segments (A to C and C to B). The procedure
then continues until the data points are well fitted by line segments. The principal
advantage of the algorithm is its simplicity; its disadvantage is error caused by
incorrect data points. Ramer (63) has used a technique similar to the iterated end-
point procedure to determine a polynomial approximation to an arbitrary-shaped
closed curve. Pavlidis and Horowitz (64) have developed related algorithms for
polygonal curve fitting.

FIGURE 17.4-2. Region boundary with missing links indicated by dashed lines.

Wang et al. (65) have developed a complex, but effective, method of gap filling of
edge fragments. The method, called ratio contour, involves three steps:

preprocess an edge detector output to produce a set of topologically uncon-
nected edge fragments;

smooth the edge fragments to minimize noise effects;
estimate a curved gap filling segment between pairs of fragments.

The third step is accomplished by minimizing the following boundary cost function
(65)

T(B) = % (174-1)

where W(B) is a weighted sum of the total gap length and curvature along a
boundary B and L(B) is the length of the boundary B. The minimization is accom-
plished using a spline-based curve smoothing algorithm (65). Wang et al. have
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(a) First stage

(b) Second stage

(c) Third stage

FIGURE 17.4-3. Iterative endpoint curve fitting.

compared their gap filling method to related algorithms (66-68) for numerous test
images, and determined that the ratio contour approach achieves as good or better
than the alternate approaches (65).

The curve-fitting method is reasonably effective for simply structured objects.
Difficulties occur when an image contains many overlapping objects and its corre-
sponding edge map contains branch structures.

17.4.2. Heuristic Edge-Linking Methods

The edge segmentation technique developed by Roberts (69) is typical of the philos-
ophy of many heuristic edge-linking methods. In Roberts’ method, edge gradients
are examined in 4 x 4 pixels blocks. The pixel whose magnitude gradient is largest
is declared a tentative edge point if its magnitude is greater than a threshold value.
Then north-, east-, south- and west-oriented lines of length 5 are fitted to the gradient
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data about the tentative edge point. If the ratio of the best fit to the worst fit, mea-
sured in terms of the fit correlation, is greater than a second threshold, the tentative
edge point is declared valid, and it is assigned the direction of the best fit. Next,
straight lines are fitted between pairs of edge points if they are in adjacent 4 x4
blocks and if the line direction is within £23 degrees of the edge direction of either
edge point. Those points failing to meet the linking criteria are discarded. A typical
boundary at this stage, shown in Figure 17.4-4a, will contain gaps and multiply con-
nected edge points. Small triangles are eliminated by deleting the longest side; small

Bounday Detection

L

L

(a) Edge point linkages

(b) Elimination of multiple linkages and bridging

FIGURE 17.4-4. Roberts edge linking.

rectangles are replaced by their longest diagonal, as indicated in Figure 17.4-4b.
Short spur lines are also deleted. At this stage, short gaps are bridged by straight-line
connection. This form of edge linking can be used with a wide variety of edge detec-
tors. Nevatia (70) has used a similar method for edge linking of edges produced by a
Heuckel edge detector.

Robinson (71) has suggested a simple but effective edge-linking algorithm in
which edge points from an edge detector providing eight edge compass directions
are examined in 3 x 3 blocks as indicated in Figure 17.4-5. The edge point in the
center of the block is declared a valid edge if it possesses directional neighbors in
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the proper orientation. Extensions to larger windows should be beneficial, but the
number of potential valid edge connections will grow rapidly with window size.

FIGURE 17.4-5. Edge linking rules.

17.4.3. Hough Transform Edge Linking

The Hough transform (72-74) can be used as a means of edge linking. The Hough
transform involves the transformation of a line in Cartesian coordinate space to a
point in polar coordinate space. With reference to Figure 17.4-64, a straight line can
be described parametrically as

p = xcosO+ysin (17.4-1)

where p is the normal distance of the line from the origin and 6 is the angle of the
origin with respect to the x axis. The Hough transform of the line is simply a point at
coordinate (p, 0) in the polar domain as shown in Figure 17.4-6b. A family of lines
passing through a common point, as shown in Figure 17.4-6¢, maps into the con-
nected set of p-6 points of Figure 17.4-6d. Now consider the three colinear points
of Figure 17.4-6e. The Hough transform of the family of curves passing through the
three points results in the set of three parametric curves in the p— 8 space of Figure
17.4-6f. These three curves cross at a single point (p,, 6,) corresponding to the
dashed line passing through the colinear points.
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FIGURE 17.4-6. Hough transform.

Duda and Hart Version. Duda and Hart (73) have adapted the Hough transform
technique for line and curve detection in discrete binary images. Each nonzero data
point in the image domain is transformed to a curve in the p-6 domain, which
is quantized into cells. If an element of a curve falls in a cell, that particular cell is
incremented by one count. After all data points are transformed, the p-6 cells are
examined. Large cell counts correspond to colinear data points that may be fitted by
a straight line with the appropriate p—6 parameters. Small counts in a cell generally
indicate isolated data points that can be deleted.
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Figure 17.4-7a presents the geometry utilized for the development of an algo-
rithm for the Duda and Hart version of the Hough transform. Following the notation
adopted in Section 13.1, the origin of the image is established at the upper left cor-
ner of the image. The discrete Cartesian coordinates of the image point (j, k) are

x; = j+% (17.4-3a)
Ve = k+1 (17.4-3b)
e W
3 V] x> J=-1 0 8 - N
] Puar 0
b ¢
Yk Line p *
1 4+ Segment I !
i pmr!.\’ M-1
Image, F(j, k) Hough Array, H(m, n)

FIGURE 17.4-7. Geometry for Hough transform computation.

Consider a line segment in a binary image F(j, k) , which contains a point at coordi-
nate (j, k) that is at an angle ¢ with respect to the horizontal reference axis. When
the line segment is projected, it intersects a normal line of length p emanating from
the origin at an angle 6 with respect to the horizontal axis. The Hough array
H(m,n) consists of cells of the quantized variables p, and 6, . It can be shown that

_me <p, <P (17.4-4a)

IN
[en}
IN
a

(17.4-4b)

where

s = 1)+ 01 (17.4-4¢)
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For ease of interpretation, it is convenient to adopt the symmetrical limits of Figure
17.4-7b and to set M and N as odd integers so that the center cell of the Hough array
represents p, = 0 and 6, = 0. The Duda and Hart (D & H) Hough transform algo-
rithm follows.

1.

2.

Initialize the Hough array to zero.

For each (j, k) for which F(j, k) = 1, compute
p(n) = Xx; cOs 0,+y,sin0,

where

0 = 2m(N-n)
" N-1

is incremented over the range 1 <n <N under the restriction that

where

Yk
¢ = arctanq —
%

Determine the m index of the quantized rho value.

o = |y Pmax—PIM 1)
2pmax N

where [ -]y denotes the nearest integer value of its argument.
Increment the Hough array.

H(m,n) = Him,n) + 1

(17.4-5a)

(17.4-5b)

(17.4-6)

(17.4-7)

(17.4-8)

(17.4-9)

It is important to observe the restriction of Eq. 17.4-6; not all p—6 combinations are
legal for a given pixel coordinate (j, k).
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Computation of the Hough array requires on the order of N evaluations of Eqgs.
17.4-4 to 17.4-9 for each nonzero pixel of F(j, k) . The size of the Hough array is not
strictly dependent on the size of the image array. However, as the image size
increases, the Hough array size should also be increased accordingly to maintain
computational accuracy of tho and theta. In most applications, the Hough array size
should be set at least one quarter the image size to obtain reasonably accurate results.

Figure 17.4-8 presents several examples of the D & H version of the Hough trans-
form. In these examples, M = N = 127 and J = K = 512. The Hough arrays
have been flipped bottom to top for display purposes so that the positive rho and
positive theta quadrant is in the normal Cartesian first quadrant (i.e., the upper right
quadrant).

O’Gorman and Clowes Version. O’ Gorman and Clowes (75) have proposed a
modification of the Hough transformation for linking-edge points in an image. In
their procedure, the angle 6 for entry in p—6 space is obtained from the gradient
direction of an edge. The corresponding p value is then computed from Eq. 17.4-4
for an edge coordinate (j, k). However, instead of incrementing the (p, 6) cell by
unity, the cell is incremented by the edge gradient magnitude in order to give greater
importance to strong edges than weak edges.

The following is an algorithm for computation of the O’ Gorman and Clowes (O
& C) version of the Hough transform. Figure 17.4-7a defines the edge angles refer-
enced in the algorithm.

1. Initialize the Hough array to zero.

2. Given a gray scale image F(j, k) , generate a first-order derivative edge gra-
dient array G(j, k) and an edge gradient angle array y(j, k) using one of the
edge detectors described in Section 15.2.1.

3. For each (j, k) for which G(j, k) >T, where T is the edge detector threshold
value, compute

P(J, k) = x;cos{0(j, k)} +y, sin{B(j, k)} (17.4-10)
where
v+ for y< ¢ (17.4-11a)
0 = 2

\y+§ for y> ¢ (17.4-11b)

. Vi
with 0 = arctan{—} (17.4-12)

X.

J



BOUNDARY SEGMENTATION 605

(a) Three dots: upper left, center, lower right b) Hough transform of dots

(c) Straight line (d) Hough transform of line

(e) Straight dashed line (f) Hough transform of dashed line

FIGURE 17.4-8. Duda and Hart version of the Hough transform.
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and

y+37“ for —nSy<—g’ (17.4-13a)
v= g+l for Z<y<Z (17.4-13b)
-3 for F<y<m (17.4-13¢)

4. Determine the m and n indices of the quantized rho and theta values.

m = {M—[pm“_p("’ k)](M_l)} (17.4-14a)
2P max N
n = [N_““"]Z#JN (17.4-14b)
5. Increment the Hough array.
H(m,n) = H(m, n) + G(j, k) (17.4-15)

Figure 17.4-9 gives an example of the O’Gorman and Clowes version of the
Hough transform. The original image is 512 x 512 pixels, and the Hough array is of
size 511 x 511 cells. The Hough array has been flipped bottom to top for display.

Kesidis and Papamarkos (76) have developed an algorithm for computing an
inverse Hough transform (IHT) of a binary image. The algorithm detects peaks of
the sinusoidal curves in the Hough transform (HT) space and decomposes each
sunusoid to produce an image identical to the original image excepts for relatively
minor quantization error effects. They propose filtering in the HT space as a means
of extracting image edges on the basis of their size, orientation and location.

The task of detecting straight lines in a gray scale image has been formulated
by Aggarwal and Karl (77) as an inverse problem. This formulation, based upon
an inverse Radon transformation,' relates the location and orientation of image
lines to the input image such that constraints can be established to suppress
image noise.

1. S. R. Deans (78) has proved that a Hough transform can be computed as a special case of the
Radon transform.
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Hough Transform Edge Linking. The Hough transform can be used for edge link-
ing in the following manner. Each (p, 6) cell whose magnitude is sufficiently large
defines a straight line that passes through the original image. If this line is overlaid
with the image edge map, it should cover the missing links of straight-line edge seg-
ments, and therefore, it can be used as a mask to fill-in the missing links using some
heuristic method, such as those described in the preceding section. Another
approach, described below, is to use the line mask as a spatial control function for
morphological image processing.

(a) Original

(b) Sobel edge gradient (c) Hough array

FIGURE 17.4-9. O’Gorman and Clowes version of the Hough transform of the building
image.
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(a) Original (b) Sobel edge map after thinning
(c) D & H Hough array (d) Hough line overlays
(e) Edge map after ROI dilation (f) Linked edge map

FIGURE 17.4-10. Hough transform morphological edge linking.
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Figure 17.4-10 presents an example of Hough transform morphological edge
linking. Figure 17.4-10a is an original image of a noisy octagon, and Figure 17.4-
10b shows an edge map of the original image obtained by Sobel edge detection fol-
lowed by morphological thinning, as defined in Section 14.3. Although this form of
edge detection performs reasonably well, there are gaps in the contour of the object
caused by image noise. Figure 17.4-10c shows the D & H version of the Hough
transform. The eight largest cells in the Hough array have been used to generate the
eight Hough lines shown as gray lines overlaid on the original image in Figure 17.4-
10d. These Hough lines have been widened to a width of 3 pixels and used as a
region-of-interest (ROI) mask that controls the edge linking morphological process-
ing such that the processing is performed only on edge map pixels within the ROI.
Edge map pixels outside the ROI are left unchanged. The morphological processing
consists of three iterations of 3 x 3 pixel dilation, as shown in Figure 17.4-10e, fol-
lowed by five iterations of 3 x 3 pixel thinning. The linked edge map is presented in
Figure 17.4-10f.

17.4.4. Snakes Boundary Detection

Snakes, developed by Kass et al. (79), is a method of molding a closed contour to the
boundary of an object in an image. The snake model is a controlled continuity
closed contour that deforms under the influence of internal forces, image forces and
external constraint forces. The internal contour forces provide a piecewise smooth-
ness constraint. The image forces manipulate the contour toward image edges. The
external forces are the result of the initial positioning of the contour by some a priori
means.

Let v(s) = [x(s), y(s)] denote a parametric curve in the continuous domain
where s is the arc length of the curve. The continuous domain snake energy is
defined as (79)

1 1
Eg = IOIEN{v(s)}dHIO E,{v(s)}ds+j0 E{v(s)}ds (17.4-16)

where E,; denotes the internal energy of the contour due to bending or discontinui-
ties, E, represents the image energy and E; is the constraint energy. In the discrete
domain, the snake energy is

N N N
Eg = z E{v,}+ z Efv,}+ z E{v,} (17.4-17)

n=1 n=1 n=1

where v, = [x,,y,] for n = 0, 1, ..., N represents the discrete contour. The location

of a snake corresponds to the local minima of the energy functional of Eq. 17.4-17.
Kass et al. (79) have derived a set of N differential equations whose solution min-

imizes the snake energy. Samadani (80) has investigated the stability of these snake
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model solutions. The greedy algorithm (81,82) expresses the internal snake energy
in terms of its continuity energy E. and curvature energy E as

Ey = a(n)E{v,} +BEv,} (17.4-18)

where o(n) and B(n) control the elasticity and rigidity of the snake model. The
continuity energy is defined as

d—‘vn—vn_l‘

E, = 17.4-19
€7 MAX{d-|v,()-v,_ [} ( )
and the curvature energy is defined as
) 2
E Va1 =2Vt Vs | (17.4-19)

K= . 2
MAX{|v, | =2v,()+v, |}

where d is the average curve length and v, (j) represents the eight neighbors of a
point v, forj = 1,2,...,8.

The conventional snake model algorithms suffer from the inability to mold a
contour to severe object concavities. Another problem is the generation of false
contours due to the creation of unwanted contour loops. Ji and Yan (83) have devel-
oped a loop-free snake model segmentation algorithm that overcomes these prob-
lems. Figure 17.4-11 illustrates the performance of their algorithm. Figure 17.4-
11a shows the initial contour around the pliers object, Figure 17.4-11b is the
segmentation using the greedy algorithm and Figure 17.4-11c is the result with the
loop-free algorithm.

A number of papers about improvements to the snake algorithm have been
published since the third edition of this book. Brigger, Hoeg and Unser (84) and
Sakalli, Lam and Yan (85) have proposed refinements that improve the speed of
the snakes algorithm. A problem with the basic snake algorithm is that it some-
times converges to a local minima, which is not on the true boundary of an
object. Park and Keller (86) have combined the snake method with watershed
segmentation as a means of avoiding local minima. Nguyn, Worring and van den
Boomgaard (87) have also combined the snake algorithm with watershed seg-
mentation to obtain smoother contours of segmented objects. Xie and Mirmehdi
(88) have combined the snake algorithm with a form of region segmentation to
create a segmentation method, which is more tolerant to weak edges and image
noise.
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(a) Original with initial contour

(b) Segmentation with greedy algorithm (c) Segmentation with loop-free algorithm

FIGURE 17.4-11. Snakes image segmentation of the pliers image. Courtesy of Lilian Ji
and Hong Yan, University of Sydney, Australia.

17.5. TEXTURE SEGMENTATION

It has long been recognized that texture should be a valuable feature for image seg-
mentation. Putting this proposition to practice, however, has been hindered by the
lack of a reliable and computationally efficient means of texture measurement.

One approach to texture segmentation, fostered by Rosenfeld et al. (§9-91), is to
compute some texture coarseness measure at all image pixels and then detect
changes in the coarseness of the texture measure. In effect, the original image is pre-
processed to convert texture to an amplitude scale for subsequent amplitude segmen-
tation. A major problem with this approach is that texture is measured over a
window area, and therefore, texture measurements in the vicinity of the boundary
between texture regions represent some average texture computation. As a result, it
becomes difficult to locate a texture boundary accurately.

Another approach to texture segmentation is to detect the transition between
regions of differing texture. The basic concept of texture edge detection is identical
to that of luminance edge detection; the dissimilarity between textured regions is
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enhanced over all pixels in an image, and then the enhanced array is thresholded to
locate texture discontinuities. Thompson (92) has suggested a means of texture
enhancement analogous to the Roberts gradient presented in Section 15.2. Texture
measures are computed in each of four adjacent Wx W pixel subregions scanned
over the image, and the sum of the cross-difference magnitudes is formed and
thresholded to locate significant texture changes. This method can be generalized to
include computation in adjacent windows arranged in 3 x 3 groups. Then, the result-
ing texture measures of each window can be combined in some linear or nonlinear
manner analogous to the 3 x 3 luminance edge detection methods of Section 15.2.

Zucker et al. (93) have proposed a histogram thresholding method of texture seg-
mentation based on a texture analysis technique developed by Tsuji and Tomita (94).
In this method, a texture measure is computed at each pixel by forming the spot gra-
dient followed by a dominant neighbor suppression algorithm. Then a histogram is
formed over the resultant modified gradient data. If the histogram is multimodal,
thresholding of the gradient at the minimum between histogram modes should pro-
vide a segmentation of textured regions. The process is repeated on the separate
parts until segmentation is complete.

Section 16.6.7 has discussed the utilization of tunable Gabor filters as a means
of texture analysis. Bovik et al. (95) have proposed using a bank of Gabor filters
of multiple narrow spatial frequency and orientation for texture segmentation.
Boundaries between adjacent textural regions can be detected by comparing
changes in the channel amplitude responses (95). Dunn and Higgins (96) have
developed a design procedure for determining optimal Gabor filter parameters for
texture segmentation.

Texture feature extraction using a wavelet transform has been introduced in
Section 16.6.8. Unser (97) has suggested a method of texture segmentation using
wavelets in which the wavelet variances are estimated. Hsin (98) has proposed a
modulated wavelet transform as an improvement of the basic wavelet transform.

Rushing et al. (99) have developed a novel texture segmentation method based
upon association rules. In data mining applications, association rules are used to
determine relationships between items in large data sets. For example, items might
be books of a certain topic that a buyer orders from an internet bookstore. If a buyer
purchases a book of that topic (Digital Image Processing), the buyer is likely to buy
another book of that topic. Rushing et al. have developed association rules that cap-
ture frequently occurring local intensity variations in textural images. Details of the
texture segmentation method are sketchy, but their experimental segmentation
results are impressive.

There have been several proposals for hybrid texture segmentation schemes,
which utilize some combination of edge, amplitude boundary, texture gradient,
Gabor filter or active contours methods. Ma and Manjunath (100) have proposed a
method, called EdgeFlow, in which the direction of change in amplitude and tex-
ture at each pixel is used to guide the segmentation. Hill et al. (101) have devel-
oped a hybrid method in which a wavelet transform is used to obtain a texture
gradient. A watershed transform is applied to the texture gradient to obtain a seg-
mentation. Sagiv et al. (102) have used Gabor filters to generate feature vectors,
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which are processed by a geodesic active contours algorithm. All three schemes
have reported good texture segmentation, but on different data sets; so that a per-
formance comparison is not possible.

The texture segmentation methods, previously presented, have all been applied to
gray scale images. They can be applied to color images, simplistically, by combin-
ing the red, green and blue components to form a luminance-like image, and then
segmenting the luminance image. Alternatively, texture segmentation can be per-
formed separately on the RGB components, and the three segmentations can be
combined is some heuristic manner. In the following, three non-simplistic color tex-
ture segmentation methods are described at a high (non detailed) level.

Mirmehdi and Petrou (103) have developed a complex, but effective, color tex-
ture segmentation algorithm. Its key point is that the RGB image to be segmented is
linearly transformed to obtain three color components that represent the luminance,
the red-green and the blue-yellow content of the image. In subsequent steps, the
three color components are processed in parallel. The next step is to smooth the
color components to several levels of coarse to fine resolution. The red-green and
blue-yellow components are blurred more than the luminance component. The
remaining steps in the algorithm, described in detail in reference 103, consist of
clustering segmentation at different blur levels followed by multiscale probabilistic
relaxation.

Deng and Manjunath have proposed an algorithm that first performs a gross color
re-quantization that produces color class maps. Region growing is performed on the
class maps to effect the segmentation.

Chen et al. (104) have developed an algorithm in which a luminance compo-
nent is derived from a RGB image. Gray scale feature extraction is then per-
formed on the luminance image. In parallel, a small set of dominant color features
are extracted from the RGB image. Then a crude segmentation is performed using
the two sets of features. Finally, an iterative border process is performed to refine
the segmentation. See reference 103 for details. All three color texture segmenta-
tion algorithms perform well on experimental images. As with the gray level
methods, the test data sets are different. So a relative performance assessment is
not possible.

In summary, a relatively large number of heuristic texture segmentation meth-
ods have been described in order from simple to complex. As might be expected,
the simpler methods do not perform very well on cluttered images. The more
complex methods fare better on cluttered images, but they require considerable
computation.

17.6. SEGMENT LABELING

The result of any successful image segmentation is the unique labeling of each pixel
that lies within a specific distinct segment. One means of labeling is to append to
each pixel of an image the label number or index of its segment. A more succinct
method is to specify the closed contour of each segment. If necessary, contour filling
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techniques (41) can be used to label each pixel within a contour. The following
describes two common techniques of contour following.

The contour following approach to image segment representation is commonly
called bug following. In the binary image example of Figure 17.6-1, a conceptual
bug begins marching from the white background to the black pixel region indicated
by the closed contour. When the bug crosses into a black pixel, it makes a left turn

FIGURE 17.6-1. Contour following.

FIGURE 17.6-2. Comparison of bug follower algorithms.

and proceeds to the next pixel. If that pixel is black, the bug again turns left, and if
the pixel is white, the bug turns right. The procedure continues until the bug returns
to the starting point. This simple bug follower may miss spur pixels on a boundary.
Figure 17.6-2a shows the boundary trace for such an example. This problem can be
overcome by providing the bug with some memory and intelligence that permit the
bug to remember its past steps and backtrack if its present course is erroneous.

Figure 17.6-2b illustrates the boundary trace for a backtracking bug follower. In
this algorithm, if the bug makes a white-to-black pixel transition, it returns to its pre-
vious starting point and makes a right turn. The bug makes a right turn whenever it
makes a white-to-white transition. Because of the backtracking, this bug follower
takes about twice as many steps as does its simpler counterpart.



REFERENCES 615

While the bug is following a contour, it can create a list of the pixel coordinates
of each boundary pixel. Alternatively, the coordinates of some reference pixel on the
boundary can be recorded, and the boundary can be described by a relative move-
ment code. One such simple code is the crack code (106), which is generated for
each side p of a pixel on the boundary such that C(p) =0, 1, 2, 3 for movement to the
right, down, left, or up, respectively, as shown in Figure 17.6-3. The crack code for
the object of Figure 17.6-2 is as follows:

FIGURE 17.6-3. Crack code definition.

p: 1 23 45 6 7 8 9 10 11 12
cpp 0103 01 212 2 3 3

Upon completion of the boundary trace, the value of the index p is the perimeter of
the segment boundary. Section 18.2 describes a method for computing the enclosed
area of the segment boundary during the contour following.

Freeman (107,108) has devised a method of boundary coding, called chain cod-
ing, in which the path from the centers of connected boundary pixels are represented
by an eight-element code. Figure 17.6-4 defines the chain code and provides an
example of its use. Freeman has developed formulas for perimeter and area calcula-
tion based on the chain code of a closed contour.

Zingaretti et al. (109) have developed a fast, single pass algorithm for the coding
of region boundaries.
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SHAPE ANALYSIS

Several qualitative and quantitative techniques have been developed for characteriz-
ing the shape of objects within an image. These techniques are useful for classifying
objects in a pattern recognition system and for symbolically describing objects in an
image understanding system. Some of the techniques apply only to binary-valued
images; others can be extended to gray level images.

18.1. TOPOLOGICAL ATTRIBUTES

Topological shape attributes are properties of a shape that are invariant under rubber-
sheet transformation (1-3). Such a transformation or mapping can be visualized as
the stretching of a rubber sheet containing the image of an object of a given shape to
produce some spatially distorted object. Mappings that require cutting of the rubber
sheet or connection of one part to another are not permissible. Metric distance is
clearly not a topological attribute because distance can be altered by rubber-sheet
stretching. Also, the concepts of perpendicularity and parallelism between lines are
not topological properties. Connectivity is a topological attribute. Figure 18.1-1a is
a binary-valued image containing two connected object components. Figure 18.1-1b
is a spatially stretched version of the same image. Clearly, there are no stretching
operations that can either increase or decrease the connectivity of the objects in the
stretched image. Connected components of an object may contain holes, as illus-
trated in Figure 18.1-1c. The number of holes is obviously unchanged by a topolog-
ical mapping.

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.
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(a) Two objects (b) Two objects after (c) Two objects with holes
rubber sheet stretching C=2H=3 E=1

FIGURE 18.1-1. Topological attributes.

There is a fundamental relationship between the number of connected object
components C and the number of object holes H in an image called the Euler num-
ber, as defined by

E=C-H (18.1-1)

The Euler number is also a topological property because C and H are topological
attributes.

Irregularly shaped objects can be described by their topological constituents. Con-
sider the tubular-shaped object letter R of Figure 18.1-2a, and imagine a rubber band
stretched about the object. The region enclosed by the rubber band is called the con-
vex hull of the object. The set of points within the convex hull, which are not in the
object, form the convex deficiency of the object. There are two types of convex defi-
ciencies: regions totally enclosed by the object, called lakes; and regions lying
between the convex hull perimeter and the object, called bays. In some applications,
it is simpler to describe an object indirectly in terms of its convex hull and convex
deficiency. For objects represented over rectilinear grids, the definition of the convex
hull must be modified slightly to remain meaningful. Objects such as discretized cir-
cles and triangles clearly should bejudged as being convex even though their bound-
aries are jagged. This apparent difficulty can be handled by considering a rubber

LAKE i

BAY

(a) Object (b) Convex hull (c) Bays and lake

FIGURE 18.1-2. Definitions of convex shape descriptors.
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band to be stretched about the discretized object. A pixel lying totally within the rub-
ber band, but not in the object, is a member of the convex deficiency. Sklansky et al.
(4,5) have developed practical algorithms for computing the convex attributes of dis-
cretized objects.

18.2. DISTANCE, PERIMETER AND AREA MEASURES

This section develops shape analysis measures based upon distance measurements.

18.2.1. Distance Measures

Distance is a real-valued function d{( j,, ky), (j,, k,)} of two image points (j,, k)
and (j,, k,) satisfying the following properties (6):

d{(]pk])’(]z! kz)}ZO (182-13)
d{(j, k) (o k)Y = d{( o ky), (i kp)} (18.2-1b)

d{(Jy k), (s k) 3+ d{( s ky)s (3o k3) } 2 d{ (s ky)s (s k3) } (18.2-1c)

There are a number of distance functions that satisfy the defining properties. The
most common measures encountered in image analysis are the Euclidean distance,

1/2
dy = [(jl —jz)z+(k1—k2)2] (18.2-2a)

the magnitude distance also called the city block distance,
dy = [iy=Jo| + [k =Ky (18.2-2b)

and the maximum value distance also called the chessboard distance,

s

dy = MAX{|j, - j,

ki — ko) (18.2-2¢)

In discrete images, the coordinate differences (j, —j,) and (k, —k,) are integers,
but the Euclidean distance is usually not an integer.

Voronoi Tesselation. Voronoi tesselation is an important tool in image analysis
(7). The Voronoi tesselation process accepts a zero background value image,
which contains feature seeds of unit amplitude scattered throughout its area. The
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placing of the seeds is determined by some other means. All background pixels are
assigned to the nearest seed in a geometric distance sense except for the skeleton
of nearly equi-distant region border pixels. The result of the tesselation process is
the production of a Voronoi diagram in which all pixels are uniquely labeled.
Rosenfeld and Pfaltz (8) are credited with the first Voronoi tesselation algorithm.
Breu et al. (9) and Guan and Ma (10) have developed more efficient algorithms.
Most Voronoi tesselation algorithms use the Euclidean distance measure because
the separating skeleton is rotation invariant. It is possible to use morphological
dilation algorithms, such as the thickening operator defined in Section 14.3.4, to
create a Voronoi diagram. Using a rhombus structuring element in the dilation pro-
cess is equivalent to using a city block distance measure. Likewise use of a square
structuring element gives the same result as with a chessboard distance measure.
Figure 18.2-1 contains a combined Voronoi diagram and a distance transform of
an image containing 50 randomly placed seeds. In the figure, the white lines delin-
eate the Voronoi regions.

FIGURE 18.2-1. Example of a Voronoi diagram and a distance transform. Courtesy
of S. Ma.

Distance Transform. The distance transform, also called the distance map, is
another useful distance measuring tool (11, p 489). Consider a binary image for
which the Voronoi diagram exists. At each pixel within a Voronoi region, the dis-
tance to the nearest seed pixel is recorded in a distance map image at the corre-
sponding pixel (8). In the example of Figure 18.2-1, the brightness of a pixel is
proportional to the distance to the nearest seed. Computing the Euclidean distance at
each pixel is time consuming. Danielsson (12) has developed an efficient, but
approximate, distance transform algorithm based upon neighborhood measure-
ments. Maurer (13) has proposed a sequential algorithm base upon a partial Voronoi
construction, which operates in linear time.
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18.2.2. Perimeter and Area Measures

Perimeter and area measurements are meaningful only for binary images. Consider a
discrete binary image containing one or more objects, where F(j, k) = 1 if a pixel
is part of the object and F(j, k) = 0 for all non-object or background pixels.

The perimeter of each object is the count of the number of pixel sides traversed
around the boundary of the object starting at an arbitrary initial boundary pixel and
returning to the initial pixel. The area of each object within the image is simply the
count of the number of pixels in the object for which F( j, k) = 1. As an example,
for a 2x2 pixel square, the object area is A, = 4 and the object perimeter is
P, = 8. An object formed of three diagonally connected pixels possesses A, = 3
and P, = 12.

The enclosed area of an object is defined to be the total number of pixels for which
F(j, k) = 0 or 1 within the outer perimeter boundary P of the object. The enclosed
area can be computed during a boundary-following process while the perimeter is
being computed (14,15). Assume that the initial pixel in the boundary- following pro-
cess is the first black pixel encountered in a raster scan of the image. Then, proceed-
ing in a clockwise direction around the boundary, a crack code C(p), as defined in
Section 17.6, is generated for each side p of the object perimeter such that C(p) =0, 1,
2, 3 for directional angles 0, 90, 180, 270°, respectively. The enclosed area is

PE
Ap =Y jlp—1) Ak(p) (18.2-3a)
p=1

where Pp; is the perimeter of the enclosed object and

P
i) =Y AjG) (18.2-3b)
i=1

with j(0) = 0. The delta terms are defined by

if Cp) = 1 (18.2-4a)
if C(p) = 3 (18.2-4¢)
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1 if C(p) =0 (18.2-4d)
Ak(p) =1 0 if C(p) =1 or3 (18.2-4e)
-1 if C(p) =2 (18.2-4f)

Table 18.2-1 gives an example of computation of the enclosed area of the following
four-pixel object:

S O O O
S = = O
oS = O O
S O = O
S O O O

TABLE 18.2-1. Example of Perimeter and Area Computation

P C(p) A j(p) A k(p) Jj(p) A(p)
1 0 0 1 0 0
2 3 -1 0 -1 0
3 0 0 1 -1 -1
4 1 1 0 0 -1
5 0 0 1 0 -1
6 3 -1 0 -1 -1
7 2 0 -1 -1 0
8 3 -1 0 -2 0
9 2 0 -1 -2 2

10 2 0 -1 -2 4

11 1 1 0 -1 4

12 1 1 0 0 4

18.2.3. Bit Quads

Gray (16) has devised a systematic method of computing the area and perimeter of
binary objects based on matching the logical state of regions of an image to binary
patterns. Let n{Q} represent the count of the number of matches between image
pixels and the pattern Q within the curly brackets. By this definition, the object area
is then

Ap = n{l} (18.2-5)
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If the object is enclosed completely by a border of white pixels, its perimeter is
equal to

P, = 2n{0 1} +2n {?} (18.2-6)

Now, consider the following set of 2 x 2 pixel patterns called bit quads defined in
Figure 18.2-2. The object area and object perimeter of an image can be expressed in
terms of the number of bit quad counts in the image as

010
Qo
0|0
0, 1o 0|1 0|0 010
oo 00 041 1190
171 011 00 10
@ 0o 0|1 11 110
1 1 0 1 110 1 1
@ 011 11 141 1]0
11
Q.
1 1
110 ¢ 1
Op
0 1 1 0
FIGURE 18.2-2. Bit quad patterns.
Ap = n{0}+2n{0,} +3n{Q5} +4n{Q,} +2n{Qp}]  (18.2-Ta)

~
s}
|

=n{Q} +n{Q,} +n{Q3} +2n{Qp} (18.2-7b)
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These area and perimeter formulas may be in considerable error if they are utilized
to represent the area of a continuous object that has been coarsely discretized. More
accurate formulas for such applications have been derived by Duda (17):

Ao = 1nf0,} +1n{0,} + {03} +n{Q,} +3n{ 0} (18.2-8a)
Po = n{Qy}+ £ln{Q)}+n{Q3}+2n{0p}] (18.2-8b)

Bit quad counting provides a very simple means of determining the Euler number of
an image. Gray (16) has determined that under the definition of four-connectivity,
the Euler number can be computed as

E = 1[n{Q,}-n{Q;} +2n{Qp}] (18.2-92)
and for eight-connectivity
E = 1n{Q,}-n{Q3}-2n{Qp}] (18.2-9b)

It should be noted that although it is possible to compute the Euler number E of an
image by local neighborhood computation, neither the number of connected compo-
nents C nor the number of holes H, for which E = C — H, can be separately computed
by local neighborhood computation.

18.2.4. Geometric Attributes

With the establishment of distance, area and perimeter measurements, various geo-
metric attributes of objects can be developed. In the following, it is assumed that the
number of holes with respect to the number of objects is small (i.e., E is approxi-
mately equal to C).

The circularity of an object is defined as

4mA,
o~ 2
(Po)

(18.2-10)

This attribute is also called the thinness ratio. A circle-shaped object has a circular-
ity of unity; oblong-shaped objects possess a circularity of less than 1.

If an image contains many components but few holes, the Euler number can be
taken as an approximation of the number of components. Hence, the average area
and perimeter of connected components, for £ > 0, may be expressed as (16)
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A
A, =2 18.2-11
AT ( )
P
p =_9 18.2-12
AT T (18 )

For images containing thin objects, such as typewritten or script characters, the aver-
age object length and width can be approximated by

P

L, = 7*‘ (18.2-13)
2A

W, =—4 (18.2-14)
PA

These simple measures are useful for distinguishing gross characteristics of an
image. For example, does it contain a multitude of small pointlike objects, or fewer
bloblike objects of larger size; are the objects fat or thin? Figure 18.2-3 contains
images of playing card symbols. Table 18.2-2 lists the geometric attributes of these
objects.

18.3. SPATIAL MOMENTS

From probability theory, the (72, n)th moment of the joint probability density p(x, y)
is defined as

M(m, n) = J._ZJ.:C "Y' p(x, ) dx dy (18.3-1)

The central moment is given by

Um.n) = [7 [7 (x=n)"(y=m)"p(x.y) dx dy (18.3-2)

where 1, and n, are the marginal means of p(x,y) . These classical relationships
of probability theory have been applied to shape analysis by Hu (18) and Alt (19).
The concept is quite simple. The joint probability density p(x,y) of Egs. 18.3-1
and 18.3-2 is replaced by the continuous image function F(x,y). Object shape is
characterized by a few of the low-order moments. Abu-Mostafa and Psaltis
(20,21) have investigated the performance of spatial moments as features for
shape analysis.
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(a) Spade (b) Heart

(c) Diamond (d) Club
FIGURE 18.2-3. Playing card symbol images.

TABLE 18.2-2. Geometric Attributes of Playing Card Symbols

Attribute Spade Heart Diamond Club
Outer perimeter 652 512 548 668
Enclosed area 8,421 8,681 8.562 8.820
Average area 8,421 8,681 8,562 8,820
Average perimeter 652 512 548 668
Average length 326 256 274 334
Average width 25.8 339 31.3 26.4

Circularity 0.25 0.42 0.36 0.25
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18.3.1. Discrete Image Spatial Moments

The spatial moment concept can be extended to discrete images by forming spatial
summations over a discrete image function F(j, k) . The literature (22-24) is nota-
tionally inconsistent on the discrete extension because of the differing relationships
defined between the continuous and discrete domains. Following the notation estab-
lished in Chapter 13, the (m, n)th spatial geometric moment is defined as

J K
My(m,n) = % 3 ()" ()" F(j, k) (18.3-3)
j=lk=1

where, with reference to Figure 13.1-1, the scaled coordinates are

X = j+ (18.3-4a)

=

=kl (18.3-4b)

The origin of the coordinate system is the upper left corner of the image. This for-
mulation results in moments that are extremely scale dependent; the ratio of second-
order (m + n = 2) to zero-order (m = n = 0) moments can vary by several orders of
magnitude (25). The spatial moments can be restricted in range by spatially scaling
the image array over a unit range in each dimension. The (i, n)th scaled spatial geo-
metric moment is then defined as

K
Mmn) = —— 3 3 ()" ()" F (. ) (18.3-5)
JUK k=1
Clearly,
M(m,ny = Hu ") (18.3-6)
JmKn

It is instructive to explicitly identify the lower-order spatial moments. The zero-
order moment

J K
M(©0,0) = ¥ 3 F(jk) (18.3-7)
j=lk=1

is the sum of the pixel values of an image. It is called the image surface. If F(j, k) is
a binary image, its surface is equal to its area. The first-order row moment is

K
S S 5 FK) (18.3-8)

j=lk=1

M(1,0) =

~Ii—

J
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and the first-order column moment is

M0, 1) =

I

J K
> > wFG. k) (18.3-9)
j=1k=1

Table 18.3-1 lists the scaled spatial moments of several test images. These images
include unit-amplitude gray scale versions of the playing card symbols of Figure
18.2-2, several rotated, minified and magnified versions of these symbols, as shown
in Figure 18.3-1, as well as an elliptically shaped gray scale object shown in Figure
18.3-2. The ratios

x, = M(L0) (18.3-10a)
M(0, 0)

- _M(@O,1) _

e = oo (18.3-10b)

of first- to zero-order spatial moments define the image centroid. The centroid,
called the center of gravity, is the balance point of the image function F(j, k) such
that the mass of F(j, k) left and right of X; and above and below y, is equal.

With the centroid established, it is possible to define the scaled spatial central
moments of a discrete image, in correspondence with Eq. 18.3-2, as

J K

L Y )" 0= 30 F LK) (18.3-11)
JUK j=1 k=1

U(m,n) =

For future reference, the (m, n)th unscaled spatial central moment is defined as

J K
Uy(mn) = ¥ N (=3)" (3 = 3)"F(j, k) (18.3-12)
j=1 k=1
where
M, (1
% = v(1.9) (18.3-13a)
M0, 0)
_My©. 1 (18.3-13b)

k= 3,0, 0)
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(a) Rotated spade (b) Rotated heart
(c) Rotated diamond (d) Rotated club
(e) Minified heart () Magnified heart

FIGURE 18.3-1. Rotated, magnified and minified playing card symbol images.
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FIGURE 18.3-2. Elliptically shaped object image.

It is easily shown that

(18.3-14)

The three second-order scaled central moments are the row moment of inertia,

J K

U2.0) =~ 3 Y (-5 F(j. k) (18.3-15)
J7 ot k=1
the column moment of inertia,
1 ! K 2
U0,2) ==Y 3 -3 FG b (18.3-16)
K™ k=1

and the row—column cross moment of inertia,

J K
UL = o z Z(x ~X) (= F ) (18.3-17)



638 SHAPE ANALYSIS

The central moments of order 3 can be computed directly from Eq. 18.3-11 for
m + n =3, or indirectly according to the following relations:

U(3,0) = M(3,0) -3y, M(2,0) +2(3,)°M(1,0) (18.3-18a)
U@, 1) =M(2,1) =25, M(1, 1) - %;M(2,0) + 2(5,)°M(0,1)  (18.3-18b)
U(1,2) =M(1,2) - 25,M(1, 1) - 5,M(0, 2)+2()‘cj)2M(1,0) (18.3-18c)

U(0,3) =M(0,3) - 3%, M(0,2) + 2()'cj)2M(0, 1) (18.3-18d)

Table 18.3-2 presents the horizontal and vertical centers of gravity and the scaled
central spatial moments of the test images.

The three second-order moments of inertia defined by Eqs. 18.3-15, 18.3-16 and
18.3-17 can be used to create the moment of inertia covariance matrix,

(18.3-19)

u2,0) U,
U, 1) U(,2)

Performing a singular-value decomposition of the covariance matrix results in the
diagonal matrix

E'UE = A (18.3-20)
where the columns of
€11 fn
E = (18.3-21)
€1 €x
are the eigenvectors of U and
A O
A = (18.3-22)
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contains the eigenvalues of U. Expressions for the eigenvalues can be derived
explicitly. They are

1 1 2 2 2,172
Ay =3U2,0) + U(0,2)] + 1[U(2,0)* + U(0,2)° - 2U(2, 0)U(0,2) + 4U(1, 1)*]
(18.3-23a)
1 1 2 2 2.1/2
7»2 =§[U(2,0)+U(0, 2)]—§[U(2, 0)"+U(0,2)" -2U(2,0)U(0,2)+4U(1, 1)7]
(18.3-23b)

Let A, = MAX{A,A,} and Ay = MIN{A,, A,}, and let the orientation angle 6
be defined as

arctan{ @} if Ay, = A, (18.3-24a)
e
0 =
arctan{@} it &, =2, (18.3-24b)
€12

The orientation angle can be expressed explicitly as

(18.3-24c)

0 = arctan{ w}
Ul

The eigenvalues A, and A, and the orientation angle 6 define an ellipse, as shown
in Figure 18.3-2, whose major axis is A;, and whose minor axis is A, . The major
axis of the ellipse is rotated by the angle 6 with respect to the horizontal axis. This
elliptically shaped object has the same moments of inertia along the horizontal and
vertical axes and the same moments of inertia along the principal axes as does an
actual object in an image. The ratio

R, = (18.3-25)

<L

of the minor-to-major axes is a useful shape feature.

Table 18.3-3 provides moment of inertia data for the test images. It should be
noted that the orientation angle can only be determined to within plus or minus nn/2
radians.
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TABLE 18.3-3. Moment of Inertia Data of Test Images

Largest Smallest Orientation Eigenvalue
Image Eigenvalue Eigenvalue (radians) Ratio
Spade 33.286 16.215 —-0.153 0.487
Rotated spade 33.223 16.200 -1.549 0.488
Heart 36.508 16.376 1.561 0.449
Rotated heart 36.421 16.400 -0.794 0.450
Magnified heart 589.190 262.290 1.562 0.445
Minified heart 2.165 0.984 1.560 0.454
Diamond 42.189 13.334 1.560 0.316
Rotated diamond 42.223 13.341 —-0.030 0.316
Club 37.982 21.831 -1.556 0.575
Rotated club 38.073 21.831 0.802 0.573
Ellipse 47.149 11.324 0.785 0.240

18.3.2. Hu’s Invariant Moments

Hu (18) has proposed a normalization of the unscaled central moments, defined by
Eq. 18.3-12, according to the relation

Uy(m, n)

V(m,n) = (18.3-26a)
[M(0,0)]*
where
o= ’";”H (18.3-26b)
form + n =2, 3,... These normalized central moments have been used by Hu to

develop a set of seven compound spatial moments that are invariant in the continu-
ous image domain to translation, rotation and scale change. The Hu invariant
moments are defined below.

hy = V(2,0)+V(0,2) (18.3-27a)
hy = [V(2,0)=V(0,2)]° +4[V(1,1)]° (18.3-27b)
hy = [V(3,0)=3V(1,2)]" +[V(0,3) - 3V(2, D]’ (18.3-27¢)

hy =[V(3,0)+ V(1,2)]° + [V(0,3) - V(2, 1)]° (18.3-27d)
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hs =[V(3,0)-3V(1,2)][V(3,0) + V(1, 2)][[V(3, 0) + V(1, 2)1”-3[v(0,3) + V(2 DI]

+[3V(2,1)-V(0,3)][V(0,3)+ V(2, D][3[V(3,0)+ V(1, 2)]2

—[V(0,3) + V(2, DT7] (18.3-27¢)

he = [V(2,0) - V(0,2)][[V(3,0) + V(1, )1 - [V(0,3) + V(2, DI]

+4V(1, DHIV(3,0) + V(1,2)][V(0, 3) + V(2, 1)] (18.3-27f)
h,=[3V(2,1)-V(0,3)1[V(3,0) + V(1,2)][[V(3, 0) + V(1, 2)]2 =3[V(0,3) + V(2, 1)]2]
+[3V(1,2)-V(3,0)][V(0, 3) + V(2, DI[3[V(3,0) + V(1, 2)]2

—[V(0,3) + V(2, DI’ (18.3-27g)

Table 18.3-4 lists the moment invariants of the test images. As desired, these
moment invariants are in reasonably close agreement for the geometrically modified
versions of the same object, but differ between objects. The relatively small degree
of variability of the moment invariants for the same object is due to the spatial dis-
cretization of the objects.

The terms of Eq. 18.3-27 contain differences of relatively large quantities, and
therefore, are sometimes subject to significant roundoff error. Liao and Pawlak (26)
have investigated the numerical accuracy of geometric spatial moment measures.

TABLE 18.3-4. Invariant Moments of Test Images

Image hyx10" hyx10° hyx10° hyx10° hgx 107 hex10° hyx 10"
Spade 1920 4387 0715 0295 023 0185 -14.159
Rotated spade 1919 4371 0704 0270 0097 0162 -11.102
Heart 1867 5052 1435 8052 27.340 5702 -15.483
Rotated heart 1866 5004 1434 8010 27.126 5650 -—14.788
Magnified heart 1873 5710 1473 8600 30575  6.162 0559
Minified heart ~ 1.863 4887 1443 8019 27241 5583 0658
Diamond 1985 10648 0018 0475 0004 0490  0.004
Rotated diamond 1987 10663 ~ 0.024  0.656 0082  0.678  -0.020
Club 2033 3014 2313 5641 20353 3096  10.226
Rotated club 2033 3040 2323 5749 20968 3167  13.487

Ellipse 2.015 15.242  0.000 0.000 0.000  0.000 0.000
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18.3.3. Non-Geometric Spatial Moments

Teage (27) has introduced a family of orthogonal spatial moments based upon
orthogonal polynomials. The family includes Legendre, Zernike and pseudo
Zernike moments as defined in reference 28 in the continuous domain. Khotanzad
and Hong (29) and Lia and Pawlak (30) have investigated Zernike spatial
moments for spatial invariance. Teh and Chin (28) have analyzed these orthogo-
nal spatial moments along with rotational and complex spatial moments as candi-
dates for invariant moments. They concluded that the Zernike and pseudo Zernike
moments out performed the others in terms of noise sensitivity and information
redundancy.

The polynomials previously discussed for spatial moment computation are
defined in the continuous domain. To use them for digital images requires that the
polynomials be discretized. This introduces quantization error, which limits their
usage. Mukundan, Ong and Lee (31) have proposed the use of Tchebichef polyno-
mials, which are directly defined in the discrete domain, and therefore, are not sub-
ject to quantization error. Yap, Paramesran and Ong (32) have suggested the use of
Krawtchouk polynomials, which also are defined in the discrete domain. Their stud-
ies show that the Krawtchouk moments are superior to moments based upon the
Zernike, Legendre and Tchebichef moments.

18.4. SHAPE ORIENTATION DESCRIPTORS

The spatial orientation of an object with respect to a horizontal reference axis is the
basis of a set of orientation descriptors developed at the Stanford Research Institute
(33). These descriptors, defined below, are described in Figure 18.4-1.

1. Image-oriented bounding box: the smallest rectangle oriented along the rows
of the image that encompasses the object

2. Image-oriented box height: dimension of box height for image-oriented box

3. Image-oriented box width: dimension of box width for image-oriented box

1
217-8N

(a) Image-oriented (b) Object-oriented (¢} Radial measures
bounding box bounding box

FIGURE 18.4-1. Shape orientation descriptors.
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Image-oriented box area: area of image-oriented bounding box

Image oriented box ratio: ratio of box area to enclosed area of an object for
an image-oriented box

Object-oriented bounding box: the smallest rectangle oriented along the
major axis of the object that encompasses the object

Object-oriented box height: dimension of box height for object-oriented box
Object-oriented box width: dimension of box width for object-oriented box
Object-oriented box area: area of object-oriented bounding box

Object-oriented box ratio: ratio of box area to enclosed area of an object for
an object-oriented box

Minimum radius: the minimum distance between the centroid and a perimeter
pixel

Maximum radius: the maximum distance between the centroid and a perime-
ter pixel

Minimum radius angle: the angle of the minimum radius vector with respect
to the horizontal axis

Maximum radius angle: the angle of the maximum radius vector with respect
to the horizontal axis

Radius ratio: ratio of minimum radius angle to maximum radius angle

Table 18.4-1 lists the orientation descriptors of some of the playing card symbols.

TABLE 18.4-1. Shape Orientation Descriptors of the Playing Card Symbols

Rotated Rotated Rotated

Descriptor Spade Heart Diamond Club
Row-bounding box height 155 122 99 123
Row-bounding box width 95 125 175 121
Row-bounding box area 14,725 15,250 17,325 14,883
Row-bounding box ratio 1.75 1.76 2.02 1.69
Object-bounding box height 94 147 99 148
Object-bounding box width 154 93 175 112
Object-bounding box area 14,476 13,671 17,325 16,576
Object-bounding box ratio 1.72 1.57 2.02 1.88
Minimum radius 11.18 38.28 38.95 26.00
Maximum radius 92.05 84.17 88.02 82.22
Minimum radius angle ~1.11 0.35 1.06 0.00

Maximum radius angle —_1.54 -0.76 0.02 0.85
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18.5. FOURIER DESCRIPTORS
The perimeter of an arbitrary closed curve can be represented by its instantaneous
curvature at each perimeter point. Consider the continuous closed curve drawn on
the complex plane of Figure 18.5-1, in which a point on the perimeter is measured

by its polar position z(s) as a function of arc length s. The complex function z(s)
may be expressed in terms of its real part x(s) and imaginary part y(s) as

z(s) = x(s) +iy(s) (18.5-1)

The tangent angle defined in Figure 18.5-1 is given by

®(s) = arctand 2/ (18.5-2)
(s) = arctan m 5-
and the curvature is the real function
k(s) = 420) (18.5-3)

ds

The coordinate points [x(s), y(s)] can be obtained from the curvature function by the
reconstruction formulas

x(s)

x(0) +L; k(o) cos{®@(a)} do. (18.5-4a)

y(s) = y(0) +L; k(o) sin{®(a)} do (18.5-4b)

where x(0) and y(0) are the starting point coordinates.

(s)f -
y(s 2(8) \\@(sj
\

1
x(s) X

FIGURE 18.5-1. Geometry for curvature definition.
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Because the curvature function is periodic over the perimeter length P, it can be
expanded in a Fourier series as

k(s) = z cnexp{@} (18.5-5a)

n=-—oo

where the coefficients ¢, are obtained from

_1¢P _2min B
c, = Pf() k(s)exp{ 5 }ds (18.5-5b)

This result is the basis of an analysis technique developed by Cosgriff (34) and Brill
(35) in which the Fourier expansion of a shape is truncated to a few terms to produce
a set of Fourier descriptors. These Fourier descriptors are then utilized as a symbolic
representation of shape for subsequent recognition.

If an object has sharp discontinuities (e.g., a rectangle), the curvature function is
undefined at these points. This analytic difficulty can be overcome by the utilization
of a cumulative shape function

0(s) = f; k(oc)doc—z—zf (18.5-6)

proposed by Zahn and Roskies (36). This function is also periodic over P and can
therefore be expanded in a Fourier series for a shape description.

Bennett and MacDonald (37) have analyzed the discretization error associated
with the curvature function defined on discrete image arrays for a variety of connec-
tivity algorithms. The discrete definition of curvature is given by

2(s) = x(s)) +iy(s;) (18.5-7a)
_ y(Sj)—y(Sj_l) _

(I)(Sj) = arctan{m} (18.5 7b)

k(sj) = (I)(sj)—(D(ijl) (18.5-7¢)

where s; represents the jth step of arc position. Figure 18.5-2 contains results of the
Fourier expansion of the discrete curvature function.

Bartolini et al. (38) have developed a Fourier descriptor-based shape matching
technique called WARP in which a dynamic time warping distance is used for shape
comparison.
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FIGURE 18.5-2. Fourier expansions of curvature function.

18.6. THINNING AND SKELETONIZING

Sections 14.3.2 and 14.3.3 have previously discussed the usage of morphological
conditional erosion as a means of thinning or skeletonizing, respectively, a binary
object to obtain a stick figure representation of the object. There are other non-mor-
phological methods of thinning and skeletonizing. Some of these methods create thin-
ner, minimally connected stick figures. Others are more computationally efficient.
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Thinning and skeletonizing algorithms can be classified as sequential or parallel
(39,40). In a sequential algorithm, pixels are examined for deletion (erasure) in a fixed
sequence over several iterations of an algorithm. The erasure of a pixel in the nth iter-
ation depends on all previous operations performed in the (n-1)th iteration plus all
pixels already processed in the incomplete nth iteration. In a parallel algorithm, era-
sure of a pixel in the nth iteration only depends upon the result of the (-1)th iteration.
Sequential operators are, of course, designed for sequential computers or pipeline pro-
cessors, while parallel algorithms take advantage of parallel processing architectures.

Sequential algorithms can be classified as raster scan or contour following. The
morphological conditional erosion operators (41) described in Sections 14.3.2 and
14.3.3 are examples of raster scan operators. With these operators, pixels are exam-
ine in a 3 x3 window, and are marked for erasure or not for erasure. In a second
pass, the conditionally marked pixels are sequentially examined in a 3 x3 window.
Conditionally marked pixels are erased if erasure does not result in the breakage of a
connected object into two or more objects.

In the contour following algorithms, an image is first raster scanned to identify
each binary object to be processed. Then each object is traversed about its periphery
by a contour following algorithm, and the outer ring of pixels is conditionally
marked for erasure. This is followed by a connectivity test to eliminate erasures that
would break connectivity of an object. Rosenfeld (42) and Arcelli and di Bija (43)
have developed some of the first connectivity tests for contour following thinning
and skeletonizing.

More than one hundred papers have been published on thinning and skeletoniz-
ing algorithms. No attempt has been made to analyze these algorithms; rather, the
following references are provided. Lam et al. (39) have published a comprehensive
survey of thinning algorithms. The same authors (40) have evaluated a number of
skeletonization algorithms. Lam and Suen (44) have evaluated parallel thinning
algorithms. Leung et al. (45) have evaluated several contour following algorithms.
R. Kimmel et al. (46) have used distance maps for skeletonization. References 47
and 48 describe a rotation-invariant, rule-based thinning method.
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IMAGE DETECTION AND
REGISTRATION

This chapter covers two related image analysis tasks: detection and registration.
Image detection is concerned with the determination of the presence or absence of
objects suspected of being in an image. Image registration involves the spatial align-
ment of a pair of views of a scene.

19.1. TEMPLATE MATCHING

One of the most fundamental means of object detection within an image field is by
template matching, in which a replica of an object of interest is compared to all
unknown objects in the image field (1-4). If the template match between an
unknown object and the template is sufficiently close, the unknown object is labeled
as the template object.

As a simple example of the template-matching process, consider the set of binary
black line figures against a white background as shown in Figure 19.1-1a. In this
example, the objective is to detect the presence and location of right triangles in the
image field. Figure 19.1-1b contains a simple template for localization of right trian-
gles that possesses unit value in the triangular region and zero elsewhere. The width
of the legs of the triangle template is chosen as a compromise between localization
accuracy and size invariance of the template. In operation, the template is sequen-
tially scanned over the image field and the common region between the template and
image field is compared for similarity.

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.
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£L—0

(a) Array of objects

(b) Triangle template

FIGURE 19.1-1. Template-matching example.

A template match is rarely ever exact because of image noise, spatial and ampli-
tude quantization effects and a priori uncertainty as to the exact shape and structure
of an object to be detected. Consequently, a common procedure is to produce a dif-
ference measure D(m,n) between the template and the image field at all points of
the image field where -M <m <M and -N<n <N denote the trial offset. An object
is deemed to be matched wherever the difference is smaller than some established
level L, (m, n). Normally, the threshold level is constant over the image field. The
usual difference measure is the mean-square difference or error as defined by

J

D(mn) = 33 [F(j. k)~ TG~ m k-n))° (19.1-1)
k

where F(j,k) denotes the image field to be searched and 7(j, k) is the template.
The search, of course, is restricted to the overlap region between the translated tem-
plate and the image field. A template match is then said to exist at coordinate (m, n) if

D(m, n) < Lp(m, n) (19.1-2)

Now, let Eq. 19.1-1 be expanded to yield

D(m,n) = D(m,n) — 2D,(m, n) + D;(m, n) (19.1-3)
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where

Dy(m.n) = ¥ [F(j. b)) (19.1-4a)
7k

Dy(m,n) = 22 [F(j, k)T(j—m, k—n)] (19.1-4b)
7k

Dyim.n) = 33 (T(j-m k-n))’ (19.1-4c)
Tk

The term D5(m, n) represents a summation of the template energy. It is constant val-
ued and independent of the coordinate (m, n). The image energy over the window
area represented by the first term D,(m, n) generally varies rather slowly over the
image field. The second term should be recognized as the cross correlation
Rpr(m, n) between the image field and the template. At the coordinate location of a
template match, the cross correlation should become large to yield a small differ-
ence. However, the magnitude of the cross correlation is not always an adequate
measure of the template difference because the image energy term D, (m, n) is posi-
tion variant. For example, the cross correlation can become large, even under a con-
dition of template mismatch, if the image amplitude over the template region is high
about a particular coordinate (m, n). This difficulty can be avoided by comparison
of the normalized cross correlation

Z Z[F(J’k)T(J_m’k_n)]
ik

~ D,(m, n)
Rpr(m, n) = = 5 (19.1-5)
Dy (m. m) Y S IFG.K)]
ik
to a threshold level Lg(m, n). A template match is said to exist if
Rpr(m, n) > Ly(m, n) (19.1-6)

The normalized cross correlation has a maximum value of unity that occurs if and
only if the image function under the template exactly matches the template. Figure
19.1-2 provides an example of normalized cross-correlation template matching of a
binary image containing a L-shaped object, which is translated and rotated.

Rosenfeld (5) has proposed using the following absolute value difference as a
template matching difference measure.

D(m, n) = ZZ\F(]', k) =T( —m, k—n)| (19.1-7)
Tk
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(a) Source image (b) Template image

(¢) Numerator image (d) Denominator image

(e) Cross-correlation image (f) Thresholded c-c image, T=0.78

FIGURE 19.1-2. Normalized cross-correlation template matching of the ._source image.
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For some computing systems, the absolute difference computes faster than the
squared difference. Rosenfeld (5) also has suggested comparing the difference mea-
sure of Eq. 19.1-7 to a relatively high threshold value during its computation. If the
threshold is exceeded, the summation is terminated. Nagel and Rosenfeld (6) have
proposed to vary the order in which template data is accessed rather than the conven-
tional row by row access. The template data fetching they proposed is determined by
a probability estimate of D(m, n) .

Atallah (7) has developed a Monte Carlo algorithm for the computation of the
absolute value difference, which is faster than brute force computation.

One of the major limitations of template matching is that an enormous number of
templates must often be test matched against an image field to account for changes
in rotation and magnification of template objects. For this reason, template matching
is usually limited to smaller local features, which are more invariant to size and
shape variations of an object. Such features, for example, include edges joined in a
Y or T arrangement.

19.2. MATCHED FILTERING OF CONTINUOUS IMAGES

Matched filtering, implemented by electrical circuits, is widely used in one-dimen-
sional signal detection applications such as radar and digital communication (8—10).
It is also possible to detect objects within images by a two-dimensional version of
the matched filter (11-15).

In the context of image processing, the matched filter is a spatial filter that pro-
vides an output measure of the spatial correlation between an input image and a ref-
erence image. This correlation measure may then be utilized, for example, to
determine the presence or absence of a given input image, or to assist in the spatial
registration of two images. This section considers matched filtering of deterministic
and stochastic images.

19.2.1. Matched Filtering of Deterministic Continuous Images

As an introduction to the concept of the matched filter, consider the problem of
detecting the presence or absence of a known continuous, deterministic signal or ref-
erence image F(x,y) in an unknown or input image F(x,y) corrupted by additive,
stationary noise N(x, y) independent of F(x,y). Thus, F(x,y) is composed of the
signal image plus noise,

Fy(x,y) = F(x,y) +N(x,y) (19.2-1a)
or noise alone,

FU(-xvy) = N(X,y) (192-1b)
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The unknown image is spatially filtered by a matched filter with impulse response
H(x,y) and transfer function #(,, o)) to produce an output

Fo(x,y) = Fy(x,y) ®H(x, y) (19.2-2)

The matched filter is designed so that the ratio of the signal image energy to the
noise field energy at some point (g, m) in the filter output plane is maximized.

The instantaneous signal image energy at point (g,m) of the filter output in the
absence of noise is given by

2
IS = [F(x,y) ®H(x, y)| (19.2-3)
with x = ¢ and y = m. By the convolution theorem,

o (oo 2
IS(e, n)\2 = Jlm Jlm F(o, 0)Ho, o)expli(o.e+on)}do, do, (19.2-4)

where o, ®,) is the Fourier transform of F(x, y). The additive input noise com-
ponent N(x,y) is assumed to be stationary, independent of the signal image, and
described by its noise power-spectral density #Wy(o,, ©)) . From Eq. 1.4-27, the
total noise power at the filter output is

N =77 w0, 0) do, do, (19.2-5)

Then, forming the signal-to-noise ratio, one obtains

1Se, )l
N

“w Jw Flo,, my)}[(mx, ) exp {i(®.&+ u)yn)} do, du)y ?
=== - (19.2-6)

'[:'[: Wy (0, 0,)|H (0, my)\zdmxdmy

This ratio is found to be maximized when the filter transfer function is of the form
(8,11)

(0, 0,) exp {-i(0,£+ 0.0}

19.2-7
Wy (@, (oy) ( )

Hw, my) =

If the input noise power-spectral density is white with a flat spectrum,
Wy (@, ) =n,/2, the matched filter transfer function reduces to



MATCHED FILTERING OF CONTINUOUS IMAGES 657

H(o,, o) = nl}*(mx, o)) exp {-i(0.e+0n)} (19.2-8)

and the corresponding filter impulse response becomes

H(x,y) = n—z-F*(s—x,n— y) (19.2-9)

w

In this case, the matched filter impulse response is an amplitude scaled version of
the complex conjugate of the signal image rotated by 180°.
For the case of white noise, the filter output can be written as

Folx,y) = ,%FU(X' y) ®@FF(e—x,n-Y) (19.2-10a)

w

or

Fo(x,y) = ni |77 Fulo p)F*(o+e-xB+n-y)doudB (19.2-10b)

If the matched filter offset (e, ) is chosen to be zero, the filter output

Fo(x,y) = ni [ ]7 Fulo, BYF*(0-x, B~ y) dodB (19.2-11)

is then seen to be proportional to the mathematical correlation between the input image
and the complex conjugate of the signal image. Ordinarily, the parameters (g, ) of the
matched filter transfer function are set to be zero so that the origin of the output plane
becomes the point of no translational offset between F,(x,y) and F(x,y).

If the unknown image F(x,y) consists of the signal image translated by dis-
tances (Ax, Ay) plus additive noise as defined by

Fy(x,y) = F(x+Ax,y+Ay) + N(x, y) (19.2-12)

the matched filter output for ¢ = 0, 1 = 0 will be
Fo(x,y) = nl [ 7 UPCo+ Ax, B+ Ay) + N(x, 1) IF*(0i— %, B—y) dot dB

(19.2-13)

A correlation peak will occur at x = Ax, y = Ay in the output plane, thus indicating
the translation of the input image relative to the reference image. Hence the matched
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filter is translation invariant. It is, however, not invariant to rotation of the image to
be detected.

It is possible to implement the general matched filter of Eq. 19.2-7 as a two-stage
linear filter with transfer function

Ho,, 0) = Hy(0, 0)H (0, 0,) (19.2-14)

The first stage, called a whitening filter, has a transfer function chosen such that
noise N(x,y) with a power spectrum %y (w,, ) at its input results in unit energy
white noise at its output. Thus

Wy(0,, 0|7, (0, 0, = 1 (19.2-15)

The transfer function of the whitening filter may be determined by a spectral factor-
ization of the input noise power-spectral density into the product (10)

Wy (0, 0,) = Wy (0, 0) Wy (0, ) (19.2-16)

such that the following conditions hold:

Wy (0, 0) = [Wy (0, 0)]" (19.2-172)

Wy (@, 0,) = [Wy (@,0,)] (19.2-17b)
2 _ 2

Wy (0,0, = | Wy (0. 0)] = Wy (0, 0) (19.2-17¢)

The simplest type of factorization is the spatially noncausal factorization
Wy (0, 0,) = [Wy(o,o)exp {00, o)} (19.2-18)

where 6(w,, ) represents an arbitrary phase angle. Causal factorization of the
input noise power-spectral density may be difficult if the spectrum does not factor
into separable products. For a given factorization, the whitening filter transfer func-
tion may be set to

H (D @) = et (19.2-19)
Wy (0, (oy)
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The resultant input to the second-stage filteris F,(x, y) + Ny, (x, y) , where Ny, (x,y)
represents unit energy white noise and

Fl(x7 y) = F(-xry) ®HA(X,)’) (19.2'20)

is a modified image signal with a spectrum

Ao, 0)

F(0,0) = Ho, 0)H,(0,0)) = (19.2-21)

Wy (0, 0,)

From Eq. 19.2-8, for the white noise condition, the optimum transfer function of the
second-stage filter is found to be

FH(o, 0,) ,
Hy(®,, my) = —————exp{-i(0e+ (oyn)} (19.2-22)
Wy (o, o,)

Calculation of the product (o, ©))Hy(®,, ®,) shows that the optimum filter
expression of Eq. 19.2-7 can be obtained by the whitening filter implementation.
The basic limitation of the normal matched filter, as defined by Eq. 19.2-7, is that
the correlation output between an unknown image and an image signal to be
detected is primarily dependent on the energy of the images rather than their spatial
structure. For example, consider a signal image in the form of a bright hexagonally
shaped object against a black background. If the unknown image field contains a cir-
cular disk of the same brightness and area as the hexagonal object, the correlation
function resulting will be very similar to the correlation function produced by a per-
fect match. In general, the normal matched filter provides relatively poor discrimina-
tion between objects of different shape but of similar size or energy content. This
drawback of the normal matched filter is overcome somewhat with the derivative
matched filter (11), which makes use of the edge structure of an object to be
detected. The transfer function of the pth-order derivative matched filter is given by

(@ + 0) 70, 0 )exp{-i(0e+ 0,0}

(0, @) = (19.2-23)
r ) Wy(®,, ®,)
where p is an integer. If p = 0, the normal matched filter
FH(0,, o)) exp{-i(®.+0O;N)}
Hy(o,, @) = (19.2-24)

Wy(o,, ,)

is obtained. With p = 1, the resulting filter



660 IMAGE DETECTION AND REGISTRATION
2 2
5{[)(03)(, my) = (o, + (oy)%(mx, my) (19.2-25)

is called the Laplacian matched filter. Its impulse response function is

H,(x,y) = (i + i) @H(x,y) (19.2-26)

ox” 8y2

The pth-order derivative matched filter transfer function is
# = (0o + o) 19.2-27
(0, 0)) = (0, +0)) H(o0,, o) (19.2-27)

Hence the derivative matched filter may be implemented by cascaded operations
consisting of a generalized derivative operator whose function is to enhance the
edges of an image, followed by a normal matched filter.

19.2.2. Matched Filtering of Stochastic Continuous Images

In the preceding section, the ideal image F(x, y) to be detected in the presence of
additive noise was assumed deterministic. If the state of F(x,y) is not known
exactly, but only statistically, the matched filtering concept can be extended to the
detection of a stochastic image in the presence of noise (16). Even if F(x,y) is
known deterministically, it is often useful to consider it as a random field with a
mean E{F(x,y)} = F(x,y) . Such a formulation provides a mechanism for incorpo-
rating a priori knowledge of the spatial correlation of an image in its detection. Con-
ventional matched filtering, as defined by Eq. 19.2-7, completely ignores the spatial
relationships between the pixels of an observed image.
For purposes of analysis, let the observed unknown field

Fy(x,y) = F(x,y) + N(x, y) (19.2-28a)

or noise alone

Fy(x,y) = N(x, y) (19.2-28b)
be composed of an ideal image F(x, y), which is a sample of a two-dimensional sto-
chastic process with known moments, plus noise N(x,y) independent of the image,

or be composed of noise alone. The unknown field is convolved with the matched
filter impulse response H(x,y) to produce an output modeled as

Fo(x,y) = Fy(x,y) ®H(x, y) (19.2-29)
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The stochastic matched filter is designed so that it maximizes the ratio of the average
squared signal energy without noise to the variance of the filter output. This is simply
a generalization of the conventional signal-to-noise ratio of Eq. 19.2-6. In the absence
of noise, the expected signal energy at some point (g, 1) in the output field is

st = [E{F(x,y)} ®@H(x, y)| (19.2-30)

By the convolution theorem and linearity of the expectation operator,

\S(s,n)\2 = f:f:E{f(mx, o)} H o, o )expli(0e+on)}do, do, ? (19.2-31)

The variance of the matched filter output, under the assumption of stationarity and
signal and noise independence, is

N = J':x’ th’ [(We(0, 0) + Wy, my)]‘ﬂ{(u)x, ooy)‘2 do, do, (19.2-32)

where Wy(w,, ©) and Wy(w, o) are the image signal and noise power spectral
densities, respectively. The generalized signal-to-noise ratio of the two equations
above, which is of similar form to the specialized case of Eq. 19.2-6, is maximized
when

E{7*(0, ©) texp{—i(w,e+m M)}
Ho, o) = ) )

w Oy) = We(0, ©) + Wy(,, ©) (19.2-33)

Note that when F(x,y) is deterministic, Eq. 19.2-33 reduces to the matched filter
transfer function of Eq. 19.2-7.

The stochastic matched filter is often modified by replacement of the mean of the
ideal image to be detected by a replica of the image itself. In this case, for
e=mn=0,

FH(o,, )

19.2-34
We(0, 0,) + Wy(o,, o) ( )

Hw, 0,) =

A special case of common interest occurs when the noise is white,
Wy(o,, ) = ny/2, and the ideal image is regarded as a first-order nonseparable
Markov process, as defined by Eq. 1.4-17, with power spectrum

2

Wi(o,, (ny) = > 5
o+, + )

(19.2-35)
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where exp{-o} is the adjacent pixel correlation. For such processes, the resultant
modified matched filter transfer function becomes

2, 2 2
2(0” + o, + ) 70, 0,)

2 2

3 (19.2-36)
4+ny(a” +o, + my)

Ho, o) =

At high spatial frequencies and low noise levels, the modified matched filter defined
by Eq. 19.2-36 becomes equivalent to the Laplacian matched filter of Eq. 19.2-25.

19.3. MATCHED FILTERING OF DISCRETE IMAGES

A matched filter for object detection can be defined for discrete as well as continu-
ous images. One approach is to perform discrete linear filtering using a discretized
version of the matched filter transfer function of Eq. 19.2-7 following the techniques
outlined in Section 9.4. Alternatively, the discrete matched filter can be developed
by a vector-space formulation (16,17). The latter approach, presented in this section,
is advantageous because it permits a concise analysis for nonstationary image and
noise arrays. Also, image boundary effects can be dealt with accurately. Consider an
observed image vector

f, = f+n (19.3-1a)

or

f,=n (19.3-1b)

composed of a deterministic image vector f plus a noise vector n, or noise alone. The
discrete matched filtering operation is implemented by forming the inner product of
f,, with a matched filter vector m to produce the scalar output

fy=m't, (19.3-2)

Vector m is chosen to maximize the signal-to-noise ratio. The signal power in the
absence of noise is simply

S =[m'f’ (19.3-3)

and the noise power is

N = E{fm"n]im"n]"} = m"K m (19.3-4)
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where K, is the noise covariance matrix. Hence the signal-to-noise ratio is

_ (m’f]’

(19.3-5)

S
N mTKnm

The optimal choice of m can be determined by differentiating the signal-to-noise
ratio of Eq. 19.3-5 with respect to m and setting the result to zero. These operations
lead directly to the relation

mTKnm 1
m = K f (19.3-6)

T n
m f

where the term in brackets is a scalar, which may be normalized to unity. The
matched filter output

£, = t'K't, (19.3-7)

reduces to simple vector correlation for white noise. In the general case, the noise
covariance matrix may be spectrally factored into the matrix product

K. = KK’ (19.3-8)

n

with K = EA;I/2 , where E is a matrix composed of the eigenvectors of K and A
is a diagonal matrix of the corresponding eigenvalues (17). The resulting matched
filter output

fo = K11 1K't (19.3-9)

can be regarded as vector correlation after the unknown vector f;, has been whitened
by pre-multiplication by K.

Extensions of the previous derivation for the detection of stochastic image vec-
tors are straightforward. The signal energy of Eq. 19.3-3 becomes

2
S = [m'ng] (19.3-10)
where 1, is the mean vector of f and the variance of the matched filter output is

N=m'Km+m'K m (19.3-11)
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under the assumption of independence of f and n. The resulting signal-to-noise ratio
is maximized when

m = [K+K,] ', (19.3-12)

Vector correlation of m and f,;, to form the matched filter output can be performed
directly using Eq. 19.3-2 or alternatively, according to Eq. 19.3-9, where
K = EA""? and E and A denote the matrices of eigenvectors and eigenvalues of
[K;+K,], respectively (17). In the special but common case of white noise and a
separable, first-order Markovian covariance matrix, the whitening operations can be
performed using an efficient Fourier domain processing algorithm developed for
Wiener filtering (18).

19.4. IMAGE REGISTRATION

In many image processing applications, it is necessary to form a pixel-by-pixel com-
parison of two images of the same object field obtained from different sensors, or of
two images of an object field taken from the same sensor at different times. To form
this comparison, it is necessary to spatially register the images and, thereby, to cor-
rect for relative translation shifts, rotational differences, scale differences and even
perspective view differences. Often, it is possible to eliminate or minimize many of
these sources of misregistration by proper static calibration of an image sensor.
However, in many cases, a posteriori misregistration detection and subsequent cor-
rection must be performed. Chapter 13 considered the task of spatially warping an
image to compensate for physical spatial distortion mechanisms. This section con-
siders means of detecting the parameters of misregistration.

Consideration is given first to the common problem of detecting the translational
misregistration of two images. Techniques developed for the solution to this prob-
lem are then extended to other forms of misregistration.

19.4.1. Translational Misregistration Detection

The classical technique for registering a pair of images subject to unknown transla-
tional differences is to (1) form the normalized cross correlation function between
the image pair, (2) determine the translational offset coordinates of the correlation
function peak, and (3) translate one of the images with respect to the other by the
offset coordinates (19,20). This subsection considers the generation of the basic
cross correlation function and several of its derivatives as means of detecting the
translational differences between a pair of images.
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Basic Correlation Function. Let F,(j, k) and F,(j, k), for 1<;<J and 1<k<K,
represent two discrete images to be registered. F,(j, k) is considered to be the
reference image, and

Fy(Jo k) = Fi(=Jp k=k,) (19.4-1)

is a translated version of F,(j, k) where (j,,k,) are the offset coordinates of the
translation. The normalized cross correlation between the image pair is defined as

S LG, =m+ (M +1)/2, k=n+ (N+1)/2)
R(m, n) = ik

1 1

[zz LF, (. k)]zj2 [ZZ[Fz(j—m+(M+ 1)/2,k=n+(N+ 1)/2)]2}2
ik ik

J J
(19.4-2)

form=1,2,..., Mandn =1, 2,..., N, where M and N are odd integers. This formu-
lation, which is a generalization of the template matching cross correlation expres-
sion, as defined by Eq. 19.1-5, utilizes an upper left corner—justified definition for
all of the arrays. The dashed-line rectangle of Figure 19.4-1 specifies the bounds of
the correlation function region over which the upper left corner of F,(j, k) moves in
space with respect to F,(j, k) . The bounds of the summations of Eq. 19.4-2 are

MAX{l,m—(M-1)/2}<j<MIN{J,J+m—(M+1)/2}  (19.4-3a)
MAX{1,n—(N=1)/2}<k<MIN{K,K+n—(N+1)/2} (19.4-3b)

These bounds are indicated by the shaded region in Figure 19.4-1 for the trial offset
(a, b). This region is called the window region of the correlation function computa-
tion. The computation of Eq. 19.4-2 is often restricted to a constant-size window
area less than the overlap of the image pair in order to reduce the number of

calculations. This Px Q constant-size window region, called a template region, is
defined by the summation bounds

m<j<m+J-M (19.4-4a)
n<k<n+K-N (19.4-4b)
The dotted lines in Figure 19.4-1 specify the maximum constant-size template

region, which lies at the center of F,(j, k) . The sizes of the M x N correlation func-
tion array, the J x K search region and the P x O template region are related by

M=J-P+1 (19.4-5a)

N=K-Q+1 (19.4-5b)
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FIGURE 19.4-1. Geometrical relationships between arrays for the cross correlation of an
image pair.

For the special case in which the correlation window is of constant size, the cor-
relation function of Eq. 19.4-2 can be reformulated as a template search process. Let
S(u,v) denote a U x V search area within F,(j, k) whose upper left corner is at the
offset coordinate (j, k,) . Let T(p, ¢) denote a P x Q template region extracted from
F,(j, k) whose upper left corner is at the offset coordinate (j, k,) . Figure 19.4-2
relates the template region to the search area. Clearly, U>P and V> Q. The nor-
malized cross correlation function can then be expressed as

2 ZS(M, WT(u—m+1,v—-n+1)

R(m,n) = e : (19.4-6)

{z Y [S(u, v)]ZT [z N [(T(u-m+1,v—n+ NG ]z

form=1,2,....Mandn=1, 2,..., N where

M=U-P+1 (19.4-7a)

N=V-0Q+1 (19.4-7b)

The summation limits of Eq. 19.4-6 are

m<u<m+P-1 (19.4-8a)

n<v<n+Q-1 (19.4-8b)
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FIGURE 19.4-2. Relationship of template region and search area.

Computation of the numerator of Eq. 19.4-6 is equivalent to raster scanning the
template T(p, q) over the search area S(u,v) such that the template always resides
within S(u, v), and then forming the sum of the products of the template and the
search area under the template. The left-hand denominator term is the square root of
the sum of the terms [S(u, v)]2 within the search area defined by the template posi-
tion. The right-hand denominator term is simply the square root of the sum of the
template terms [7T(p, q)]2 independent of (m, n). It should be recognized that the
numerator of Eq. 19.4-6 can be computed by convolution of S(u, v) with an impulse
response function consisting of the template 7(p, ¢) spatially rotated by 180°. Simi-
larly, the left-hand term of the denominator can be implemented by convolving the
square of S(u,v) with a Px Q uniform impulse response function. For large tem-
plates, it may be more computationally efficient to perform the convolutions indi-
rectly by Fourier domain filtering.

Statistical Correlation Function. There are two problems associated with the
basic correlation function of Eq. 19.4-2. First, the correlation function may be
rather broad, making detection of its peak difficult. Second, image noise may
mask the peak correlation. Both problems can be alleviated by extending the corre-
lation function definition to consider the statistical properties of the pair of image
arrays.

The statistical correlation function (17) is defined as

3N G OG(j-m+ 1 k=n+1)
j ok

3 316,607 ST G- m L k-n+ DF]
k k

J J

Rg(m, n) =

/2

(19.4-9)
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The arrays G,(j, k) are obtained by the convolution operation

G,(j, k) = [Fi(j, k)= Fi(j, k)] ®D,(j, k) (19.4-10)

where F(j, k) is the spatial average of F,(j, k) over the correlation window. The
impulse response functions D,(j, k) are chosen to maximize the peak correlation
when the pair of images is in best register. The design problem can be solved by
recourse to the theory of matched filtering of discrete arrays developed in the pre-
ceding section. Accordingly, let f; denote the vector of column-scanned elements of
F,(j, k) in the window area and let f,(m, n) represent the elements of F,(j, k) over
the window area for a given registration shift (i, n) in the search area. There are a
total of M- N vectors f,(m,n). The elements within f, and f,(m, n) are usually
highly correlated spatially. Hence, following the techniques of stochastic filtering,
the first processing step should be to whiten each vector by premultiplication with
whitening filter matrices H; and H, according to the relations

g, = [H]1'T, (19.4-11a)
g,(m, n) = [H,y] ' £y(m, n) (19.4-11b)

where H; and H, are obtained by factorization of the image covariance matrices
K, = HH, (19.4-12a)
K, = H,H," (19.4-12b)

The factorization matrices may be expressed as

H, = E,[A,]'° (19.4-13a)
H, = E,[A,]'° (19.4-13b)

where E; and E, contain eigenvectors of K| and Kj, respectively, and A, and A,
are diagonal matrices of the corresponding eigenvalues of the covariance matrices.

The statistical correlation function can then be obtained by the normalized inner-
product computation

T
g,8,(m, n)

Rg(m, n) = (19.4-14)

1/2 1/
(g12,] Tgs(m, n)gy(m, n)]
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Computation of the statistical correlation function requires calculation of two sets of
eigenvectors and eigenvalues of the covariance matrices of the two images to be reg-
istered. If the window area contains P - Q pixels, the covariance matrices K; and K,
will each be (P- Q) x (P- Q) matrices. For example, if P = Q = 16, the covariance
matrices K and K, are each of dimension 256 x 256 . Computation of the eigenvec-
tors and eigenvalues of such large matrices is numerically difficult. However, in spe-
cial cases, the computation can be simplified appreciably (17). For example, if the
images are modeled as separable Markov process sources, and there is no observa-
tion noise, the convolution operators of Eq. 19.5-9 reduce to the statistical mask
operator

92 —p(1+pz) 92
= _ 2 2.2 2
! (1+p2)2 —-p(l+p7) (1+p7) —p(l+p)
2 2 2
p —p(l+p7) p

(19.4-15)

where p denotes the adjacent pixel correlation (21). If the images are spatially
uncorrelated, then p = 0, and the correlation operation is not required. At the other
extreme, if p =1, then

2
D, = i 54 (19.4-16)
1 -2 1

This operator is an orthonormally scaled version of the cross second derivative spot
detection operator of Eq. 15.7-3. In general, when an image is highly spatially
correlated, the statistical correlation operators D; produce outputs that are large in
magnitude only in regions of an image for which its amplitude changes significantly
in both coordinate directions simultaneously.

Figure 19.4-3 provides computer simulation results of the performance of the
statistical correlation measure for registration of the toy tank image of Figure
17.1-6b. In the simulation, the reference image F,(j, k) has been spatially offset hor-
izontally by three pixels and vertically by four pixels to produce the translated image
F,(j, k) . The pair of images has then been correlated in a window area of 16 x 16
pixels over a search area of 32 x 32 pixels. The curves in Figure 19.4-3 represent the
normalized statistical correlation measure taken through the peak of the correlation
function. It should be noted that for p = 0, corresponding to the basic correlation
measure, it is relatively difficult to distinguish the peak of Ry(m, n).For p = 0.9 or
greater, R(m, n) peaks sharply at the correct point.
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FIGURE 19.4-3. Statistical correlation misregistration detection.

The correlation function methods of translation offset detection defined by Egs.
19.4-2 and 19.4-9 are capable of estimating any translation offset to an accuracy of
+Y%2 pixel. It is possible to improve the accuracy of these methods to subpixel levels
by interpolation techniques (22). One approach (23) is to spatially interpolate the
correlation function and then search for the peak of the interpolated correlation
function. Another approach is to spatially interpolate each of the pair of images and
then correlate the higher-resolution pair.

A common criticism of the correlation function method of image registration is
the great amount of computation that must be performed if the template region and
the search areas are large. Several computational methods that attempt to overcome
this problem are presented next.

Two-State Methods. Rosenfeld and Vandenburg (24,25) have proposed two effi-
cient two-stage methods of translation offset detection. In one of the methods, called
coarse—fine matching, each of the pair of images is reduced in resolution by conven-
tional techniques (low-pass filtering followed by subsampling) to produce coarse
representations of the images. Then the coarse images are correlated and the result-
ing correlation peak is determined. The correlation peak provides a rough estimate
of the translation offset, which is then used to define a spatially restricted search
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area for correlation at the fine resolution of the original image pair. The other
method, suggested by Vandenburg and Rosenfeld (25), is to use a subset of the pix-
els within the window area to compute the correlation function in the first stage of
the two-stage process. This can be accomplished by restricting the size of the win-
dow area or by performing subsampling of the images within the window area.
Goshtasby et al. (26) have proposed random rather than deterministic subsampling.
The second stage of the process is the same as that of the coarse—fine method; corre-
lation is performed over the full window at fine resolution. Two-stage methods can
provide a significant reduction in computation, but they can produce false results.

Sequential Search Method. With the correlation measure techniques, no decision
can be made until the correlation array is computed for all (m, n) elements. Further-
more, the amount of computation of the correlation array is the same for all degrees
of misregistration. These deficiencies of the standard correlation measures have led
to the search for efficient sequential search algorithms.

An efficient sequential search method has been proposed by Barnea and Silver-
man (27). The basic form of this algorithm is deceptively simple. The absolute value
difference error

Ls = 3 Y [F1G. k) = Fyli = m, k=n)| (19.4-17)
j ok

is accumulated for pixel values in a window area. If the error exceeds a predeter-
mined threshold value before all P- Q pixels in the window area are examined, it is
assumed that the test has failed for the particular offset (m, n), and a new offset is
checked. If the error grows slowly, the number of pixels examined when the thresh-
old is finally exceeded is recorded as a rating of the test offset. Eventually, when all
test offsets have been examined, the offset with the largest rating is assumed to be
the proper misregistration offset.

Phase Correlation Method. Consider a pair of continuous domain images

Fa(x,y) = Fy(x=xpy-3,) (19.4-18)

that are translated by an offset (x,, y,,) with respect to one another. By the Fourier trans-
form shift property of Eq. 1.3-13a, the Fourier transforms of the images are related by

FH(w, my) = F(o, my) exp{—i(a)xx0+(oyy0)} (19.4-19)

The exponential phase shift factor can be computed by the cross-power spectrum
(28) of the two images as given by

(0, 0) % (0,0,
‘ffl((l)x, (Dy) 5[2(('0)(’ (D,\')‘

Go,, (oy) = = exp{i(®x, + (oyyo)} (19.4-20)
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Taking the inverse Fourier transform of Eq. 19.4-20 yields the spatial offset
G(x,y) = 8(x—x,,y-y,) (19.4-21)

in the space domain.

The cross-power spectrum approach can be applied to discrete images by utiliz-
ing discrete Fourier transforms in place of the continuous Fourier transforms in Eq.
19.4-20. However, care must be taken to prevent wraparound error. Figure 19.4-4
presents an example of translational misregistration detection using the phase corre-
lation method. Figure 19.4-4a and b show translated portions of a scene embedded
in a zero background. The scene in Figure 19.4-4a was obtained by extracting the
first 480 rows and columns of the 500 x 500 washington ir source image. The
scene in Figure 19.4-4b consists of the last 480 rows and columns of the source
image. Figure 19.4-4¢ and d are the logarithm magnitudes of the Fourier transforms
of the two images, and Figure 19.4-4¢ is the inverse Fourier transform of the cross-
power spectrum of the pair of images. The bright pixel in the upper left corner of
Figure 19.4-4¢, located at coordinate (20,20), is the correlation peak.

19.4.2. Scale and Rotation Misregistration Detection

The phase correlation method for translational misregistration detection has been
extended to scale and rotation misregistration detection (28,29). Consider a a pair of
images in which a second image is translated by an offset (x,,y,) and rotated by an
angle 0, with respect to the first image. Then

Fy(x,y) = F (xcos®, +ysin®, —x,—xsin® +ycos6, —y) (19.4-22)

Taking Fourier transforms of both sides of Eq. 19.4-22, one obtains the relationship
(28)

Ko, (Dy) = F(w,cos0, + (Dysin 0, -, sinO_ + o, cos 0,)exp{-i(wx, + (x)yyo)}
(19.4-23)

The rotation component can be isolated by taking the magnitudes 9/ (w,, ®,) and
My(o,, ®)) of both sides of Eq. 19.4-19. By representing the frequency variables in
polar form,

My(p,8) = M;(p,6-6,) (19.4-24)

the phase correlation method can be used to determine the rotation angle 6, .
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(a) Embedded image 1 (b) Embedded image 2

(c) Log magnitude of Fourier (d) Log magnitude of Fourier
transform of image 1 transform of image 1

(e) Phase correlation spatial array

FIGURE 19.4-4. Translational misregistration detection on the washington irl and
washington ir2 images using the phase correlation method. See white pixel in upper left
corner of (e).
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If a second image is a size-scaled version of a first image with scale factors (a, b),
then from the Fourier transform scaling property of Eq. 1.3-12,

L (9O
hH(o, 0,) = Wﬂ(z—, 7}) (19.4-25)

By converting the frequency variables to a logarithmic scale, scaling can be con-
verted to a translational movement. Then

F(log w,, log ®) = ‘a—lb-‘fl(log o, —loga, log - log b) (19.4-26)

Now, the phase correlation method can be applied to determine the unknown scale
factors (a,b).

19.4.3. Generalized Misregistration Detection

The basic correlation concept for translational misregistration detection can be gener-
alized, in principle, to accommodate rotation and size scaling. As an illustrative exam-
ple, consider an observed image F,(j, k) thatis an exact replica of a reference image
F,(j, k) except that it is rotated by an unknown angle 6 measured in a clockwise
direction about the common center of both images. Figure 19.4-5 illustrates the geom-
etry of the example. Now suppose that F,(j, k) isrotated by a trial angle 8, measured
in a counterclockwise direction and that it is resampled with appropriate interpolation.
Let F,(j,k;8,) denote the trial rotated version of F,(j, k) . This procedure is then
repeated for a set of angles 6, <6<6, expected to span the unknown angle 6 in the
reverse direction. The normalized correlation function can then be expressed as

2 ZFl(j,k)Fz(j,k;r)
k

R(r) = J — — (19.4-27)
Y FGOF ] S S E G k]
7k 7k
forr=1, 2,..., R. Searching for the peak of R(r) leads to an estimate of the unknown

rotation angle 6. The procedure does, of course, require a significant amount of
computation because of the need to resample F,(j, k) for each trial rotation angle 6, .

The rotational misregistration example of Figure 19.4-5 is based on the simplify-
ing assumption that the center of rotation is known. If it is not, then to extend the cor-
relation function concept, it is necessary to translate F,(j, k) to a trial translation
coordinate (j,, k,) , rotate that image by a trial angle 6,, and translate that image to
the translation coordinate (—jp, —kq) . This results in a trial image F,( j, k; jp, kq, 0, .,
which is used to compute one term of a three-dimensional correlation function
R(p, q, r) , the peak of which leads to an estimate of the unknown translation and rota-
tion. Clearly, this procedure is computationally intensive.
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FIGURE 19.4-5 Rotational misregistration detection.

It is possible to apply the correlation concept to determine unknown row and col-
umn size scaling factors between a pair of images. The straightforward extension
requires the computation of a two-dimensional correlation function. If all five
misregistration parameters are unknown, then again, in principle, a five-dimensional
correlation function can be computed to determine an estimate of the unknown
parameters. This formidable computational task is further complicated by the fact
that, as noted in Section 13.1, the order of the geometric manipulations is important.

The complexity and computational load of the correlation function method of
misregistration detection for combined translation, rotation and size scaling can be
reduced significantly by a procedure in which the misregistration of only a few cho-
sen common points between a pair of images is determined. This procedure, called
control point detection, can be applied to the general rubber-sheet warping problem.
A few pixels that represent unique points on objects within the pair of images are
identified, and their coordinates are recorded to be used in the spatial warping map-
ping process described in Eq. 13.2-3. The trick, of course, is to accurately identify
and measure the control points. It is desirable to locate object features that are rea-
sonably invariant to small-scale geometric transformations. One such set of features
are Hu’s (30) seven invariant moments defined by Eqs. 18.3-27. Wong and Hall (31)
have investigated the use of invariant moment features for matching optical and
radar images of the same scene. Goshtasby (32) has applied invariant moment fea-
tures for registering visible and infrared weather satellite images.

The control point detection procedure begins with the establishment of a small
feature template window, typically 8 x 8 pixels, in the reference image that is suffi-
ciently large to contain a single control point feature of interest. Next, a search win-
dow area is established such that it envelops all possible translates of the center of
the template window between the pair of images to be registered. It should be noted
that the control point feature may be rotated, minified or magnified to a limited
extent, as well as being translated. Then the seven Hu moment invariants #;, fori=
1, 2,..., 7 are computed in the reference image. Similarly, the seven moments
h;,(m, n) are computed in the second image for each translate pair (m, n) within the
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search area. Following this computation, the invariant moment correlation function
is formed as

;
D, hirhia(m, n)
R(r) = izl (19.4-28)

7 5 1/2 7 5 172
{ z (h“) } { Z [hiz(m, n)] }

i=1 i=1

Its peak is found to determine the coordinates of the control point feature in each
image of the image pair. The process is then repeated on other control point features
until the number of control points is sufficient to perform the rubber-sheet warping
of F,(j, k) onto the space of F,(j, k) .

19.4.4. Advanced Registration Methods

There have been several relatively recent publications regarding extensions and
improvements to the previously discussed image registration methods. The follow-
ing chronologically summarizes some of the most relevant methods. Foroosh et al.
(33) have extended the phase correlation method to the registration of a pair of
images to subpixel accuracy. Xia and Liu (34) have developed an image restoration
technique in which a pair of curves commonly present in a pair of images are recti-
fied. The warping information of the curves is used to geometrically register the
image pairs. The fundamental performance limits for image registration have been
studied by Robinson and Milanfar (35) using a Cramer-Rao mean square error
bound. Subsequently, they have evaluated a number of registration techniques.
Keller, Shkolnisky and Averbuch (36.) have developed an image registration method
for an unknown rotation angle between a pair of images. Bentoutou et al. (37) have
proposed an image registration technique applicable to the registration of remote
sensing images. Their approach is to detect the location of control points in a pair of
images to be registered. The control point locations are used to warp one of the pair
using spline interpolation. Zokai and Wolberg (38) have developed a registration
algorithm using log-polar mappings for registering image pairs subject to large rota-
tion, scale and translation transformations. Another algorithm involving control
point warping has been developed by Zagorchev and Goshtasby (39). Their paper is
concerned with the performance of several warping transformation techniques.
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PART 6

IMAGE PROCESSING SOFTWARE

Digital image processing applications typically are implemented by software calls to
an image processing library of functional operators. Many libraries are limited to
primitive functions such as lookup table manipulation, convolution and histogram
generation. Sophisticated libraries perform more complex functions such as unsharp
masking, edge detection and spatial moment shape analysis. The interface between
an application and a library is an application program interface (API), which defines
the semantics and syntax of an operation.

Chapter 20 describes the architecture of a full featured image processing API
called the Programmer’s Imaging Kernel System (PIKS). PIKS is an international
standard developed under the auspices of the International Organization for
Standardization (ISO) and the International Electrotechnical Commission (IEC).
The PIKS description in Chapter 20 serves two purposes. It explains the architecture
and elements of a well-designed image processing API. It provides an introduction
to PIKS usage to implement the programming exercises in Chapter 21.






20

PIKS IMAGE PROCESSING SOFTWARE

PIKS contains a rich set of operators that perform manipulations of multidimen-
sional images or of data objects extracted from images in order to enhance, restore
or assist in the extraction of information from images. This chapter presents a func-
tional overview of the PIKS standard and a more detailed definition of a functional
subset of the standard called PIKS Scientific.

20.1. PIKS FUNCTIONAL OVERVIEW

This section provides a brief functional overview of PIKS. References 1 to 6 provide
further information. The PIKS documentation utilizes British spelling conventions,
which differ from American spelling conventions for some words (e.g., color
instead of color). For consistency with the PIKS standard, the British spelling con-
vention has been adopted for this chapter.

20.1.1. PIKS Imaging Model

Figure 20.1-1 describes the PIKS imaging model. The solid lines indicate data flow,
and the dashed lines indicate control flow. The PIKS application program interface
consists of four major parts:

1. Data objects
2. Operators, tools and utilities

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.
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3. System mechanisms

4. Import and export

PIKS IMAGE PROCESSING SOFTWARE
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FIGURE 20.1-1. PIKS imaging model.

The PIKS data objects include both image and image-related, non-image data
objects. The operators, tools and utilities are functional elements that are used to
process images or data objects extracted from images. The system mechanisms
manage and control the processing. PIKS receives information from the application
to invoke its system mechanisms, operators, tools and utilities, and returns certain
status and error information to the application. The import and export facility pro-
vides the means of accepting images and image-related data objects from an appli-
cation, and for returning processed images and image-related data objects to the
application. PIKS can transmit its internal data objects to an external facility through
the ISO/IEC standards Image Interchange Facility (IIF) or the Basic Image Inter-
change Format (BIIF). Also, PIKS can receive data objects in its internal format,
which have been supplied by the IIF or the BIIF. References 7 to 9 provide informa-
tion and specifications of the IIF and BIIF.

20.1.2. PIKS Data Objects

PIKS supports two types of data objects: image data objects and image-related, non-
image data objects.
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FIGURE 20.1-2. Geometrical representation of a PIKS color image array.

A PIKS image data object is a five-dimensional collection of pixels whose
structure is:

Horizontal space index, 0 <x< X -1
Vertical space index, 0<y<Y-1

Depth space index, 0<z<Z -1

Temporal index, 0<¢<T-1

Color or spectral band index, 0<bh<B -1

S N e %

Some of the image dimensions may be unpopulated. For example, as shown in
Figure 20.1-2, for a color image, Z = T = 1. PIKS gives semantic meaning to cer-
tain dimensional subsets of the five-dimensional image object. These are listed in
Table 20.1-1.

PIKS utilizes the following pixel data types:

. Boolean

. Non-negative integer
. Signed integer

. Real arithmetic

| O S R

. Complex arithmetic



684

PIKS IMAGE PROCESSING SOFTWARE

TABLE 20.1-1. PIKS Image Objects

Semantic Description Image Indices
Monochrome x,,0,0,0
Volume x%2z0,0
Temporal X 0,10
Color X 0,0,b
Spectral X 0,0,b
Volume-temporal xyzt0
Volume—color X% 2z0,b
Volume-spectral X %20,b
Temporal—color x 30,8 b
Temporal—-spectral x50, b
Volume—temporal—color X%z tb
Volume—temporal-spectral X%z tb
Generic Xyztb

The precision and data storage format of pixel data is implementation dependent.

PIKS supports several image related, non-image data objects. These include:

Chain: an identifier of a sequence of operators

Composite identifier: an identifier of a structure of image arrays, lists and
records

. Histogram: a construction of the counts of pixels with some particular ampli-

tude value

Lookup table: a structure that contains pairs of entries in which the first entry
is an input value to be matched and the second is an output value

Matrix: a two-dimensional array of elements that is used in vector-space
algebra operations

Neighbourhood array: a multi-dimensional moving window associated with
each pixel of an image (e.g., a convolution impulse response function array)

7. Pixel record: a sequence of across-band pixel values

10.

11.

12.

Region-of-interest: a general mechanism for pixel-by-pixel processing
selection

Static array: an identifier of the same dimension as an image to which it is
related (e.g., a Fourier filter transfer function)

Tuple: a collection of data values of the same elementary data type (e.g.,
image size 5-tuple)

Value bounds collection: a collection of pairs of elements in which the first
element is a pixel coordinate and the second element is an image measure-
ment (e.g., pixel amplitude)

Virtual register: an identifier of a storage location for values returned from
elements in a chain
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20.1.3. PIKS Operators, Tools, Utilities and Mechanisms

PIKS operators are elements that manipulate images or manipulate data objects
extracted from images in order to enhance or restore images, or to assist in the
extraction of information from images. Exhibit 20.1-1 is a list of PIKS operators cat-
egorized by functionality.

PIKS tools are elements that create data objects to be used by PIKS operators.
Exhibit 20.1-2 presents a list of PIKS tools functionally classified. PIKS utilities are
elements that perform basic mechanical image manipulation tasks. A classification
of PIKS utilities is shown in Exhibit 20.1-3. This list contains several file access and
display utilities. PIKS mechanisms are elements that perform control and manage-
ment tasks. Exhibit 20.1-4 provides a functional listing of PIKS mechanisms. In
Exhibits 20.1-1 to 20.1-4, the elements not in PIKS Scientific or the PixelSoft
implementation of PIKS Scientific are identified by an asterisk. Non-standard ele-
ments are identified by a pound sign.

EXHIBIT 20.1-1. PIKS Operators Classification

Analysis:  image-to-non-image operators that extract numerical information from
an image

Accumulator

Difference measures
Extrema

Histogram, one-dimensional
Histogram, two-dimensional
Hough transform

Line profile

Moments

Value bounds

Classification: ~ image-to-image operators that classify each pixel of a multispec-
tral image into one of a specified number of classes based on the
amplitudes of pixels across image bands

Classifier, Bayes
Classifier, nearest neighbour

Color:  image-to-image operators that convert a color image from one color space
to another

Color conversion, linear
Color conversion, nonlinear
Color conversion, subtractive
Color lookup, interpolated
Luminance generation
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Complex image: — image-to-image operators that perform basic manipulations of
images in real and imaginary or magnitude and phase form

Complex composition
Complex conjugate
Complex decomposition
Complex magnitude

Correlation:  image-to-non-image operators that compute a correlation array of a
pair of images

Cross-correlation
Template match

Edge detection: image-to-image operators that detect the edge boundary of
objects within an image

Edge detection, orthogonal gradient
Edge detection, second derivative
Edge detection, template gradient

Enhancement:  image-to-image operators that improve the visual appearance of an
image or that convert an image to a form better suited for analysis
by a human or a machine

Adaptive histogram equalization
False color

Histogram modification

Outlier removal

Pseudocolour

Unsharp mask

Wallis statistical differencing

Ensemble:  image-to-image operators that perform arithmetic, extremal and logi-
cal combinations of pixels

Alpha blend, constant
Alpha blend, variable
Dyadic, arithmetic
Dyadic, complex
Dyadic, logical
Dyadic, predicate
Split image

7 merge
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Feature extraction:  image-to-image operators that compute a set of image fea-
tures at each pixel of an image

Label objects
Laws texture features
Window statistics

Filtering:  image-to-image operators that perform neighbourhood combinations of
pixels directly or by Fourier transform domain processing

Convolve, five-dimensional
Convolve, two-dimensional
Filtering, homomorphic
Filtering, linear

Filtering, median

Filtering, pseudomedian
Filtering, rank order

Geometric: image-to-image and ROI-to-ROI operators that perform geometric
modifications

Cartesian to polar
Flip, spin, transpose
Polar to cartesian
Rescale

Resize

Rotate

Subsample
Translate

Warp, control point
Warp, lookup table
Warp, polynomial
Zoom

Histogram shape:  non-image to non-image operators that generate shape mea-
surements of a pixel amplitude histogram of an image

Histogram shape, one-dimensional
Histogram shape, two-dimensional

Morphological: image-to-image operators that perform morphological operations
on boolean and grey scale images

Erosion or dilation, Boolean
Erosion or dilation, grey
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Fill region

Hit or miss transformation
Morphic processor
Morphology

Neighbour count

Open and close

Pixel modification: — image-to-image operators that modify an image by pixel
drawing or painting

Draw pixels
Paint pixels

Point:  image-to-image operators that perform point manipulation on a pixel-by-
pixel basis

Bit shift
Complement

Error function scaling
Gamma correction
Histogram scaling
Level slice

Lookup

Lookup, interpolated
Monadic, arithmetic
Monadic, complex
Monadic, logical
Noise combination
Power law scaling
Rubber band scaling
Threshold

Unary, integer
Unary, real
Window-level

Presentation:  image-to-image operators that prepare an image for display

Diffuse
Dither

Shape:  image-to-non-image operators that label objects and perform measure-
ments of the shape of objects within an image

Perimeter code generator
Shape metrics
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Spatial moments, invariant
Spatial moments, scaled

Unitary transform: image-to-image operators that perform multi-dimensional for-
ward and inverse unitary transforms of an image

Transform, cosine
Transform, Fourier
Transform, Hadamard
Transform, Hartley

3D Specific:  image-to-image operators that perform manipulations of three-
dimensional image data

Sequence average

Sequence Karhunen-Loeve transform
Sequence running measures

3D slice

EXHIBIT 20.1-2 PIKS Tools Classification
Image generation:  tools that create test images

Image, bar chart

Image, constant

Image, Gaussian image
Image, grey scale image
Image, random number image

Impulse response function array generation: tools that create impulse response
function neighbourhood array data
objects

Impulse, boxcar

Impulse, derivative of Gaussian
Impulse, difference of Gaussians
Impulse, elliptical

Impulse, Gaussian

Impulse, Laplacian of Gaussian
Impulse, pyramid

Impulse, rectangular

Impulse, sinc function

Look-up table generation:  tools that create entries of a look-up table data object

Array to LUT
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Matrix generation:  tools that create matrix data objects

Color conversion matrix

Region-of-interest generation:  tools that create region-of-interest data objects from
a mathematical description of the region-of-interest

ROI, coordinate
RO, elliptical
ROIL, polygon
RO, rectangular

Static array generation:  tools that create filter transfer function, power spectrum
and windowing function static array data objects

Filter, Butterworth
Filter, Gaussian

Filter, inverse

Filter, matched

Filter, Wiener

Filter, zonal

Markov power spectrum
Windowing function

EXHIBIT 20.1-3. PIKS Utilities Classification
Display:  utilities that perform image display functions

#Boolean display
#Close window
#Color display
#Event delay
#Monochrome delay
#Open titled window
#Open window
#Pseudocolor display

Export From PIKS: utilities that export image and non-image data objects from
PIKS to an application or to the IIF or BIIF

Export histogram
Export image
Export LUT
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Export matrix
Export neighbourhood array
Export ROI array
Export static array
Export tuple

Export value bounds
Get color pixel

Get pixel

Get pixel array

Get pixel record
#Output image file
*QOutput object

#Put file

Tiled image export

Import to PIKS:  utilities that import image and non-image data objects to PIKS
from an application or from the IIF or the BIIF

#Get file
Import histogram
Import image
Import LUT
Import matrix
Import neighbourhood array
Import ROI array
Import static array
Import tuple
Import value bounds
#Input image file
*Input object
#Input PhotoCD
Output object
Put color pixel
Put pixel
Put pixel array
Put pixel record
Tiled image import

Inquiry:  utilities that return information to the application regarding PIKS data
objects, status and implementation

*Inquire chain environment
*Inquire chain status
Inquire elements
Inquire image
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Inquire index assignment
Inquire non-image object
Inquire PIKS implementation
Inquire PIKS status

Inquire repository

Inquire resampling

Internal: utilities that perform manipulation and conversion of PIKS internal
image and non-image data objects

Constant predicate
Convert array to image
Convert image data type
Convert image to array
Convert image to ROI
Convert ROI to image
Copy window

Create tuple

Equal predicate
Extract pixel plane
Insert pixel plane

EXHIBITS 20.1-4 PIKS Mechanisms Classification
Chaining: mechanisms that manage execution of PIKS elements inserted in chains

*Chain abort
*Chain begin
*Chain delete
*Chain end
*Chain execute
*Chain reload

Composite identifier management:  mechanisms that perform manipulation of
image identifiers inserted in arrays, lists and
records

*Composite identifier array equal
*Composite identifier array get
*Composite identifier array put
*Composite identifier list empty
*Composite identifier list equal
*Composite identifier list get
*Composite identifier list insert
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*Composite identifier list remove
*Composite identifier record equal
*Composite identifier record get
*Composite identifier record put

Control:  mechanisms that control the basic operational functionality of PIKS

*Abort asynchronous execution
Close PIKS
Close PIKS, emergency
Open PIKS

*Synchronize

Error:  mechanisms that provide means of reporting operational errors

Error handler
Error logger
Error test

System management: mechanisms that allocate, deallocate, bind and set attributes
of data objects and set global variables

*Allocate chain
*Allocate composite identifier array
*Allocate composite identifier list
*Allocate composite identifier record
#Allocate display image

Allocate histogram

Allocate image

Allocate lookup table

Allocate matrix

Allocate neighbourhood array

Allocate pixel record

Allocate ROI

Allocate static array

Allocate tuple

Allocate value bounds collection
*Allocate virtual register

Bind match point

Bind ROI

Deallocate data object

Define sub image

Return repository identifier

Set globals
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Set image attributes
Set index assignment

Virtual register: mechanisms that manage the use of virtual registers

*Vreg alter
*Vreg clear
*Vreg conditional
*Vreg copy
*Vreg create
*Vreg delete
*Vreg get

*Vreg set

*Vreg wait

EXHIBITS 20.1-5 PIKS Convenience Functions Classification
Image preparation functions:

Create unbound image
Prepare color image
Prepare monochrome image

ROI creation functions:

Generate 2D rectangular ROI
Generate coordinate ROI
Generate elliptical ROI
Generate polygon ROI
Generate rectangular ROI
Prepare 2D rectangular ROI
Prepare ROI

Tuple generation functions:

Generate ND 1 tuple
Generate ND 3 tuple
Generate ND 4 tuple
Generate ND 5 tuple
Generate RD 3 tuple
Generate RD 4 tuple
Generate RD 5 tuple
Generate SD 1 tuple
Generate SD 3 tuple
Generate SD 4 tuple
Generate SD 5 tuple
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Destination
Non-image
Objects

Source
Non-image
Objects

Operator

FIGURE 20.1-3. PIKS operator model: non-image to non-image operators.

20.1.4. PIKS Operator Model

The PIKS operator model provides three possible transformations of PIKS data
objects by a PIKS operator:

1. Non-image to non-image
2. Image to non-image
3. Image to image

Figure 20.1-3 shows the PIKS operator model for the transformation of non-
image data objects to produce destination non-image data objects. An example of
such a transformation is the generation of shape features from an image histogram.
Another example is the translation of a ROI to produce another ROI.

The operator model for the transformation of image data objects by an operator to
produce non-image data objects is shown in Figure 20.1-4. An example of such a
transformation is the computation of the least-squares error between a pair of
images. In this operator model, processing is subject to two control mechanisms:
region-of-interest (ROI) source selection and source match point translation. These

Source Match
Points Tagged
Source
Images

ROI Destination
Source Operator Non-image
Selection Objects

Source
Match
Point
Translation

Source
ROI
Objects

FIGURE 20.1-4. PIKS operator model: image to non-image operators.
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control mechanisms are defined later. The dashed line in Figure 20.1-4 indicates the
transfer of control information. The dotted line indicates the binding of source ROI
objects to source image objects.

Figure 20.1-5 shows the PIKS operator model for the transformation of image
data objects by an operator to produce other image data objects. An example of such
an operator is the unsharp masking operator, which enhances detail within an image.
In this operator model, processing is subject to four control mechanisms: source
match point translation, destination match point translation, ROI source selection
and ROI destination selection.

Certain PIKS operators are capable of accepting source images with pixels of
non-negative or signed integer data type, and automatically promoting the source
image to the real arithmetic data type.

Some PIKS operators, e.g. two-dimensional convolution and dilation, perform
linear or nonlinear combinations of source image pixels within a neighbourhood of
a reference pixel to produce a single destination image pixel. For such operators,
the neighbourhood is specified by a neighbourhood array non-image data object.
Each neighbourhood array has an associated key pixel, which is, in general, a five-
dimensional coordinate offset measured with respect to the origin of the neighbour-
hood array. In operation, the key pixel is sequentially translated over all source
image pixels, the linear or nonlinear neighbourhood combination is computed for
each reference source pixel, and the computed result is recorded at the destination
pixel corresponding to the reference source pixel that lies “under” the key pixel. In
general, if the neighbourhood extends beyond the boundary of the source image,

Source and
Destination
Match

| e S d |
Lo Tagged Tagged Lo !
| | Source Destination | | |
: : Images Images : : |
| | l | :
| | | l
* * ROI ROI Li * Destination
Source Operator Destination |—m Image
Selection Selection Objects
Source Destin-
Match ation
Point Match
Trans- Point
lation Trans-
lation

FIGURE 20.1-5. PIKS operator model: image to image operators.
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the “missing” source pixel values are assumed to be of zero value for arithmetic
combinations or of FALSE value for Boolean combinations. Some operators specify
the boundary condition differently.

Index Assignment. Some PIKS image to non-image and image to image operators
have the capability of assigning operator indices to image indices. This capability
permits operators that are inherently Nth order, where N <5, to be applied to five-
dimensional images in a flexible manner. For example, a two-dimensional Fourier
transform can be taken of each column slice of a volumetric image using index
assignment. Figure 20.1-6 illustrates the PIKS image to non-image and image to
image operator index assignment and reassignment process. There is a global index
assignment 5-tuple, which relates the ordering of the five image indices (x, y, z, t, b)
to five generic operator indices (j, k, I, m, n). Prior to the execution of an operator,
each source image SRCp(x, y, z, t, b) is logically converted to an operator input
image Sp(j, k, [, m, n) according to a global operator assignment specification table,
generated by the index_assignment system management mechanism.

SRCp(x, y, z, t, b) SpG, k1, m, n)

Tagged Index Image to Destination
Source ——  Assignment > Non-lmf'age Non-]mage
Images Operation Objects

Image to Non-image Operator

SRCp(x, y, z, t, b) Sp(, k. 1, m, n) Dq(j, kI, mn) DSTg(x.y z 1t b)
Image to Tagged
Index Index e
. > Image > . 1 Destination
Assignment Operation #* Reassignment Images

Image to image Operator

FIGURE 20.1-6. Operator index assignment.

ROI Control. A region-of-interest (ROI) data object can be used to control which
pixels within a source image will be processed by an operator and to specify which
pixels processed by an operator will be recorded in a destination image. Conceptu-
ally, a ROI consists of an array of Boolean value pixels of up to five dimensions.
Figure 20.1-7 presents an example of a two-dimensional rectangular ROI. In this
example, if the pixels in the cross-hatched region are logically TRUE, the remaining
pixels are logically FALSE. Otherwise, if the cross-hatched pixels are set FALSE,
the others are TRUE.



698 PIKS IMAGE PROCESSING SOFTWARE

image

.

FIGURE 20.1-7. Rectangular ROI bound to an image array.

The size of a ROI need not be the same as the size of an image to which it is asso-
ciated. When a ROl is to be associated with an image, a binding process occurs in
which a ROI control object is generated. If the ROI data object is larger in spatial
extent than the image to which it is to be bound, it is clipped to the image size to
form the ROI control object. In the opposite case, if the ROI data object is smaller
than the image, the ROI control object is set to the FALSE state in the non-overlap
region.

Figure 20.1-8 illustrates three cases of ROI functionality for point processing of a
monochrome image. In case 1, the destination ROI control object is logically TRUE
over the full image extent, and the source ROI control object is TRUE over a cross-
hatched rectangular region smaller than the full image. In this case, the destination
image consists of the existing destination image with an insert of processed source
pixels. For case 2, the source ROI is of full extent, and the destination ROI is of a
smaller cross-hatched rectangular extent. The resultant destination image consists of
processed pixels inserted into the existing destination image. Functionally, the result
is the same as for case 1. The third case shows the destination image when the
source and destination ROIs are overlapping rectangles smaller than the image
extent. In this case, the processed pixels are recorded only in the overlap area of the
source and destination ROIs.

The ROI concept applies to multiple destination images. Each destination
image has a separately bound ROI control object, which independently controls
recording of pixels in the corresponding destination image. The ROI concept
also applies to neighbourhood as well as point operators. Each neighbourhood
processing element, such as an impulse response array, has a pre-defined key
pixel. If the key pixel lies within a source control ROI, the output pixel is formed
by the neighbourhood operator even if any or all neighbourhood elements lie
outside the ROI.
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PIKS provides tools for generating ROI data objects from higher level specifica-
tions. Such supported specifications include:

1. Coordinate list
2. Ellipse

3. Polygon

4. Rectangle

Case 1 Case 2

S

Case 3
FIGURE 20.1-8. ROI operation.

These tools, together with the ROI binding tool, provide the capability to concep-
tually generate five-dimensional ROI control objects from lower dimensional
descriptions by pixel plane extensions. For example, with the elliptical ROI genera-
tion tool, it is possible to generate a circular disk ROI in a spatial pixel plane, and
then cause the disk to be replicated over the other pixel planes of a volumetric image
to obtain a cylinder-shaped ROI.

A ROI data object is expressed, notationally, as a five-dimensional array ROI(x, y,
z, t, b). Associated with each image is a key point 5-tuple (x;, yy, 2, f1. by) consisting
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of five signed integers, which defines an offset of the ROI origin with respect to the
image origin. When a ROI data object is bound to an image, conceptually, the ROI
data object is translated in each orthogonal direction such that the origin of the ROI
data object is aligned in five-dimensional space with the key point in the image to
which the ROI data object is bound. The directional sense (left/right, up/down, etc.)
is the same as an image translated by match point alignment. The ROI control object
is conceptually formed by clipping the ROI data object to the extent of the image. If
the ROI data object is not in the TRUE state at the geometric centre of a particular
pixel of the image, the ROI control object is set FALSE at that pixel position. Figure
20.1-9 shows an example of the spatial relationship between a ROI data object and
an image to which it is bound.
ROI control can be globally enabled or disabled by the set_globals mechanism.

ROI offset Xg 1
X —p Image R+
o [l o X, 1 l
v
o [T I
ROI
y
v
Yr-1—
Y -1_ -

FIGURE 20.1-9. Example of the relationship between a ROI and an image.

Match Point Control. Each PIKS image object has an associated match point coor-
dinate set (x, y, z, t, b), which some PIKS operators utilize to control multi-dimen-
sional translations of images prior to processing by an operator. The generic effect
of match point control for an operator that creates multiple destination images from
multiple source images is to translate each source image and each destination image,
other than the first source image, such that the match points of these images are aligned
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with the match point of the first source image prior to processing. Processing then
occurs on the spatial intersection of all images. Figure 20.1-10 is an example of
image subtraction subject to match point control. In the example, the difference
image is shown cross-hatched.

Common @ m——m—m—mmmmmm

Match
Point \'_\_

T
|
~— |-
|
|

-

81\4

FIGURE 20.1-10. Match point translation for image subtraction.

Other Features. PIKS provides a number of other features to control processing.
These include:

NN A LD =

8.
9.
10.
11.

Processing of ROI objects in concert with image objects

Global setting of image and ROI resampling options

Global engagement of ROI control and ROI processing

Global engagement of index assignment

Global engagement of match point control

Global engagement of synchronous or asynchronous operation
Automatic source promotion, e.g. ND to RD or SD to RD if the destination
is RD

Heterogeneous bands of dissimilar data types

Element chaining

Virtual registers to store intermediate results of an operator chain
Composite image management of image and non-image objects

The PIKS Functional Specification (2) provides rigorous specifications of these fea-
tures. PIKS also contains a data object repository of commonly used impulse
response arrays, dither arrays and color conversion matrices.



702 PIKS IMAGE PROCESSING SOFTWARE

20.1.5. PIKS Application Interface

Figure 20.1-11 describes the PIKS application interface for data interchange for an
implementation-specific data pathway. PIKS supports a limited number of physi-
cal data types that may exist within an application domain or within the PIKS
domain. Such data types represent both input and output parameters of PIKS ele-
ments and image and non-image data that are interchanged between PIKS and the
application.

PIKS provides notational differentiation between most of the elementary abstract
data types used entirely within the PIKS domain (PIKS internal), those that are used
to convey parameter data between PIKS and the application (PIKS parameter), and
those that are used to convey pixel data between PIKS and the application (external
physical image). Table 20.1-2 lists the codes for the PIKS abstract data types. The
abstract data types are defined in ISO/IEC 12087-1. PIKS internal and parameter
data types are of the same class if they refer to the same basic data type. For exam-
ple, RP and RD data types are of the same class, but RP and SD data types are of dif-
ferent classes. The external physical data types supported by PIKS for the import
and export of image data are also listed in Table 20.1-2. PIKS internal pixel data
types and external pixel data types are of the same class if they refer to the same
basic data type. For example, ND and NI data types are of the same class, but SI and
ND data types are of different classes.

PIKS Element
Specification

External Physical Abstract parameters: External Physical
Source Image BP, NP, SP, RP, CP Destination Image
Abstract identifiers:
1P 1D

Pixel Data Type:
BI, NI, SI, TI, RF, CF

Pixel Data Type:
BI, NI, SI, TI, RF, CF

PIKS Language
Specification

TT
1 IP

IMPORT API EXPORT

/ \
Internal Abstract ™\ D~ ¢ AN D / Internal Abstract
Source Image ==~ S~ Destination Image
Internal Abstract

Pixel Data Type: Computational Pixel Data Type:
BD, ND, SD, RD, CD System BD, ND, SD, RD, CD

PIKS Imaging Model

FIGURE 20.1-11. PIKS application interface.
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TABLE 20.1-2. PIKS Datatype Codes

Data Type PIKS Internal Code  PIKS Parameter Code  Physical Code
Boolean BD BP BI
Non-negative integer ND NP NI
Signed integer SD SP SI
Fixed-point integer — — TI
Real arithmetic RD RP RF
Complex arithmetic CD CP CF
Character string CS CS —
Data object identifier ID 1P —
Enumerated NA EP —
Null NULL NULL —

20.1.6. PIKS Conformance Profiles

Because image processing requirements vary considerably across various applica-
tions, PIKS functionality has been subdivided into the following five nested sets of
functionality called conformance profiles:

1.

PIKS Foundation: basic image processing functionality for monochrome and
color images whose pixels are represented as Boolean values or as non-nega-
tive or signed integers.

PIKS Core: intermediate image processing functionality for monochrome and
color images whose pixels are represented as Boolean values, non-negative or
signed integers, real arithmetic values and complex arithmetic values. PIKS
Core is a superset of PIKS Foundation.

PIKS Technical: expanded image processing functionality for monochrome,
color, volume, temporal and spectral images for all pixel data types. PIKS
Technical is a superset of PIKS Core.

PIKS Scientific: complete set of image processing functionality for all image
structures and pixel data types. PIKS Scientific is a superset of PIKS Techni-
cal functionality.

. PIKS Full: complete set of image processing functionality for all image struc-

tures and pixel data types plus the capability to chain together PIKS process-
ing elements and to operate asynchronously. PIKS Full is a superset of PIKS
Scientific functionality.

Each PIKS profile may include the capability to interface with the IIF and the BIIF.
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Reference 5 is a C programmer’s guide for the Foundation profile. Reference 10
describes the functional specification of the PIKS Core profile. This book also con-
tains a compact disk with an implementation of PIKS Scientific and an associated C
language programmer’s manual.

20.2. PIKS SCIENTIFIC OVERVIEW

The PIKS Scientific profile provides a comprehensive set of image processing func-
tionality to service virtually all image processing applications. It supports all pixel
data types and the full five-dimensional PIKS image data object. It provides the fol-
lowing processing features:

Index assignment

Match point control

Support 1, 2, 4 and 8 global resampling interpolation of images and ROIs
ROI control for all ROIs

ROI processing

Heterogeneous bands

Composite images

Asynchronous processing

e Al o o

Automatic source promotion

-
e

Data object repository

At the time of publication of this book, the PixelSoft implementation of PIKS
Scientific is not fully compliant with the standard. The PixelSoft implementation
does not support heterogeneous bands, composite images or asynchronous process-
ing. Furthermore, the PixelSoft implementation is limited to nearest neighbour,
bilinear and cubic B-spline interpolation in all image dimensions for match point
resampling. For geometric operator resampling, the PixelSoft implementation is
limited to nearest neighbour, bilinear and bicubic interpolation for the first two oper-
ator indices (usually x and y space dimensions) and nearest neighbour for the other
three dimensions (usually z for depth, ¢ for temporal and b for band).

The following sections provide details of the data structures for PIKS Scientific
non-image and image data objects.

20.2.1. PIKS Scientific Non-image Data Objects

PIKS Scientific supports the non-image data objects listed below. The list contains
the PIKS Functional Specific object name code and the definition of each object.

HIST Histogram
LUT Lookup table
MATRIX Matrix
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NBHOOD_ARRAY Neighbourhood array
PIXEL_RECORD Pixel record

ROI Region-of-interest
STATIC_ARRAY Static array

TUPLE Tuple
VALUE_BOUNDS Value bounds collection

The tuple object is defined first because it is used to define other non-image and
image data objects. Tuples are also widely used in PIKS to specify operator and tool
parameters (e.g. the size of a magnified image). Figure 20.2-1 contains the tree
structure of a tuple object. It consists of the tuple size, tuple data type and a private
identifier to the tuple data values. The tuple size is an unsigned integer that specifies
the number of tuple data values. The tuple datatype option is a signed integer from 1
to 6 that specifies one of the six options. The identifier to the tuple data array is pri-
vate in the sense that it is not available to an application; only the tuple data object
itself has a public identifier.

Tuple Object
Tuple data size
number of tuple data values, e.g. 5
Tuple data type option
choice of BD, ND, SD, RD, CD or CS
Tuple data array
private identifier

FIGURE 20.2-1. Tuple object tree structure.

A PIKS histogram data object is a one-dimensional array of unsigned integers that
stores the histogram of an image plus histogram object attributes. Figure 20.2-2 shows
the tree structure of a histogram data object. The histogram array size is an unsigned
integer that specifies the number of histogram bins. The lower and upper amplitude
values are real numbers that specify the pixel amplitude range of the histogram.

Histogram Object
Histogram array size
number of histogram bins, e.g. 512
Lower amplitude value
lower amplitude value of histogram range, e.g. 0.1
Upper amplitude value
upper amplitude value of histogram range, e.g. 0.9
Histogram data array
private identifier

FIGURE 20.2-2. Histogram object tree structure.



706 PIKS IMAGE PROCESSING SOFTWARE

A PIKS lookup table data object, as shown in Figure 20.2-3, is a two-dimensional
array that stores the lookup table data plus a collection of lookup table attributes.
The two-dimensional array has the general form following:

7(0, 0) T(b, 0) T(B-1,0)
(0, ¢) T(b, e) T(B-1,e)
T0,E—1) - T(b,E—1) o T(B-1,E-1)

A special, but common case, occurs when the lookup table is one-dimensional and
B=1.

A positive integer e is the input row index to the table. It is derived from a source
image by the relationship

e =58(xy,21b) (20.2-1)

The LUT output is a one-dimensional array

a(e) = [T(0, ) -+ T(b, e) - T(B—1, e)] (20.2-2)

Lookup Table Object

Table entries

number of table entries, e.g. 512
Table bands

number of table bands, e.g. 3
Table input data type option

choice of ND or SD
Table output data type option

choice of BD, ND, SD, RD or CD
Lookup table data array

private identifier

FIGURE 20.2-3. Lookup table object tree structure.

There are two types of lookup table usage: (1) the source and destination images are
of the same band dimension, or (2) the source image is monochrome and the desti-
nation image is color. In the former case,

D(x,y,0,0,6) = T(0, S(x, y, 2, 1, b)) (20.2-3)
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In the latter case,
D(x,y,0,0,b) = T(b, S(x,y,z,0)) (20.2-4)
Figure 20.2-4 shows the tree structure of a matrix data object. The matrix is spec-

ified by its number of rows R and columns C and the data type of its constituent
terms. The matrix is addressed as follows:

M(1,1) - M(1,c) o M(1,0)
M=y - M(}, ) M(r., 0)
M(é, 1 M(k, c) M(R., C)

(20.2-5)

In PIKS, matrices are used primarily for color space conversion.

Matrix Object
Column size
number of matrix columns, e.g. 4
Row size
number of matrix rows, e.g. 3
Matrix data type option
choice of ND, SD or RD
Matrix data array
private identifier

FIGURE 20.2-4. Matrix object tree structure.

A PIKS Scientific neighbourhood array is a two-dimensional array and associ-
ated attributes as shown in Figure 20.2-5. The array has J columns and K rows. As
shown below, it is indexed in the same manner as a two-dimensional image.

H(0,0) ...  H(j,0) . H(UJ-1,0)
H(J’vk)=§ H(O.,k) H(J:,k) H(J—.l,k)
H(O,k—l) H(j,k_l) H(J—I;K—l)

(20.2-6)

In Eq. 20.2-6, the scale factor S is unity except for the signed integer data type. For
signed integers, the scale factor can be used to realize fractional elements. The key
pixel (jg, kg) defines the origin of the neighbourhood array. It need not be within
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the confines of the array. There are five types of neighbourhood arrays, specified by
the following structure codes:

GL Generic array

DL Dither array

IL Impulse response array
ML Mask array

SL Structuring element array

Neighbourhood Array Object
Neighbourhood size
specification of J, K
Key pixel
specification of ji, kx
Scale factor
integer value
Semantic label option
choice of GL, DL, IL, ML or SL
Neighbourhood data type option
choice of BD, ND, SD or RD
Neighbourhood data array
private identifier

FIGURE 20.2-5. Neighbourhood object tree structure.

Figure 20.2-6 is the tree structure of a pixel record data object. In general, it spec-
ifies the band length and the data type of each band.

Pixel Record Object
Record length
number of bands, e.g. 3
Band data types
specification of data types
Pixel record data array
private identifier

FIGURE 20.2-6. Pixel record object tree structure.

Figure 20.2-7 shows the tree structure of a region-of-interest ROI data object. Con-
ceptually, a PIKS Scientific ROI data object is a five-dimensional array of Boolean
value pixels. The actual storage method is implementation dependent.The ROI can
be defined to be TRUE or FALSE in its interior.
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The ROI can be constructed by one of the following representations:

AR ROI array

CR ROI coordinate list
ER ROI elliptical

GR ROI generic

PR ROI polygon

RR ROI rectangular

Region-of-Interest Object

ROl virtual array size

specification of Xp, Yr, Zg, Th Br
ROI structure option

choice of AR, CR, ER, GR, PR or RR
Polarity option

choice of TRUE or FALSE
Conceptual ROI data array

private identifier

FIGURE 20.2-7. Region-of-interest object tree structure.

A PIKS Scientific static array is a five-dimensional array as shown in Figure
20.2-8. Following is a list of the types of static arrays supported by PIKS:

GS Generic static array
HS Histogram
PS Power spectrum
TS Transfer function
WS Windowing function
XS Transform

Static Array Object

Static array size

specification of Xg, Yg Zg Tg Bs
Semantic label option

choice of GS, HS, PS, TS, WS or XS
Data type option

choice of BD, ND, SD, RD or CD
Static array data array

private identifier

FIGURE 20.2-8. Static array object tree structure.
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A value bounds collection is a storage mechanism containing the pixel coordinate
and pixel values of all pixels whose amplitudes lie within a lower and an upper
bound. Figure 20.2-9 is the tree structure of the value bounds collection data object.

20.2.2. PIKS Scientific Image Data Object

A PIKS image object is a tree structure of image attributes, processing control
attributes and private identifiers to an image data array of pixels and an associated
ROI. Figure 20.2-10 illustrates the tree structure of an image object. The
image attributes are created when an image object is allocated. When an image is
allocated, there will be no private identifier to the image array data. The private
identifier is established automatically when raw image data are imported to a
PIKS image object or when a destination image is created by an operator. The pro-
cessing control attributes are created when a ROI is bound to an image. It should
be noted that for the PixelSoft implementation of PIKS Scientific, all bands must
be of the same datatype and pixel precision. The pixel precision specification of
the PixelSoft implementation of PIKS Scientific is in accordance with the PIKS
standard.

Value Bounds Collection Object
Collection size
number of collection members
Lower amplitude bound
value of lower amplitude bound
Upper amplitude bound
value of upper amplitude bound
Pixel data type option
choice of ND, SD or RD
Value bounds collection data array
private identifier

FIGURE 20.2-9. Value bounds collection object tree structure.

20.2.3. PIKS Scientific C Language Binding

The PIKS Functional Specification document (2) establishes the semantic usage of
PIKS. The PIKS C language binding document (11) defines the PIKS syntactical
usage for the C programming language. At present, there are no other language
bindings. Reader familiarity with the C programming language is assumed.

The PIKS C binding has adopted the Hungarian prototype naming convention, in
which the data types of all entities are specified by prefix codes. Table 20.2-1 lists
the datatype prefix codes. The entities in courier font are binding names. Table
20.2-2 gives the relationship between the PIKS Core C binding designators and the
PIKS Functional Specification datatypes and data objects.
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TABLE 20.2-1. PIKS Datatype Prefix Codes

Prefix

Definition

Q

N X < € b 8™’ B 3 H Hh O Q Q O

Array

Boolean

Character

Internal data type
Enumerated data type
Function

Integer

External image data type
Identifier

Parameter type

Real

Structure

Pointer

Unsigned integer
Void

Complex

Zero terminated string

TABLE 20.2-2. PIKS Core C Binding Designators and Functional Specification

Datatypes and Data Objects
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Functional
Binding Specification Description
Imbool BI External Boolean datatype
Imuint NI External non-negative integer datatype
Imint SI External signed integer datatype
Imfixed TI External fixed point integer datatype
Imfloat RF External floating point datatype
Ipbool BP Parameter Boolean datatype
Ipuint NP Parameter non-negative integer datatype
Ipint SP Parameter signed integer datatype
Ipfloat RP Parameter real arithmetic datatype
Idnrepository P External repository identifier
Ipnerror IP External error file identifier
Ipsparameter basic IP External tuple data array pointer union
Ipsparameter numeric P External matrix data array pointer union
Ipsparameter pixel 1P External LUT, neighbourhood, pixel data

array pointer union

Ipspiks pixel types IP External image data array pointer union
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Image Object
Image attributes
Representation
Size
specificationof X, Y, Z, T, B
Band data type
specification of BD, ND, SD, RD or CD
Image structure option
13 choices, e.g. MON, VOL, TEM or COLR
Channel
Band precision
specification of band pixel precision
Color
White point
specification of Xp, Yp, Zp
Color space option
29 choices, e.g. CIE L*a*b* or CMYK
Control
Match point
specification of Xm, Ym, Zm tm» bm
ROI
private identifier
ROI offset
specification of xg, Yo, Zo, 1o, bo
Image data array
private identifier

FIGURE 20.2-10. Image object tree structure.

The general structure of the C language binding element prototype is:
void IvElementName

or
I(prefix)ReturnName I(prefix)ElementName

As an example, the following is the element C binding prototype for two-dimen-
sional convolution of a source image into a destination image:

Idnimage InConvolve2D ( /* OUT destination image identifier */
Idnimage nSourcelmage, /* source image identifier */
Idnimage nDestImage, /* destination image identifier */
Idnnbhood nImpulse, /* 1impulse response array identifier */
Ipint iOption /* convolution 2D option */

)

In this example, the first two components of the prototype are the identifiers to
the source and destination images. Next is the identifier to the impulse response
neighbourhood array. The last component is the integer option parameter for the
convolution boundary option. The following #define convolution options are pro-
vided in the piks . h header file:
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ICONVOLVE UPPER_LEFT 1 /* wupper left corner justified */
ICONVOLVE_ENCLOSED 2 /* enclosed array */
ICONVOLVE KEY ZERO 3 /* key pixel, zero exterior */
ICONVOLVE KEY REFLECTED 4 /* key pixel, reflected exterior */

As an example, let nSrc and nDst be the identifier names assigned to source
and destination images, respectively, and let nImpulse be the identifier of an
impulse response array. In an application program, the two-dimensional convolution
operator can be invoked as

InConvolve2D (nSrc, nDst, nImpulse, ICONVOLVE ENCLOSED) ;
or by
nDummy = InConvolve2D (nSrc, nDst, nImpulse, ICONVOLVE_ENCLOSED) ;

where ICONVOLVE ENCLOSED is a boundary convolution option. The second for-
mulation is useful for nesting of operator calls.
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PIKS IMAGE PROCESSING
PROGRAMMING EXERCISES

Digital image processing is best learned by writing and executing software programs
that implement image processing algorithms. Toward this end, the compact disk
affixed to the back cover of this book provides executable versions of the PIKS Sci-
entific Application Program Interface C programming language library, which can
be used to implement exercises described in this chapter.

The compact disk contains the following items:

A Solaris Version 2.5 or higher operating system executable version of the
PIKS Scientific APL

A Windows 2000, NT, XP and Vista operating system executable version of
the PIKS Scientific APL.

A PDF file format version of the 680 page PIKS Scientific C Programmer’s
Reference Manual written by William K. Pratt and Gerard A. Paquette.

A digital image database of most of the source images used in the book plus
many others widely used in the literature. The images are provided in the
PIKS file format. A utility program is provided for conversion from the PIKS
file format to the TIFF file format.

Digital images of many of the book photographic figures. The images are pro-
vided in the TIFF file format. A utility program is provided for conversion
from the TIFF file format to the PIKS file format.

C program Solaris and Windows source and executable demonstration programs.

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.
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C program Solaris and Windows executable programs of the programming
exercises.

PIKSTool — A Windows graphical user interface for executing many of the
PIKS operators without program compilation.

Appendix 4 contains information about the installation of the PIKS Scientific
API. The appendix also lists the contents of the compact disk directory.

The following sections contain descriptions of programming exercises. All of
them can be implemented using the PIKS API. It is, of course, possible to imple-
ment the exercises with other APIs or tools that match the functionality of PIKS
Scientific.

The purpose of these exercises is to teach the reader the fundamentals of digital
image processing software development. Toward that end, the reader should follow
the recipes of each exercise, and use the basic operators specified rather than using a
single high-level operator to obtain the desired result. For example, it is recom-
mended that the reader should follow the steps of Exercise 10.1 to perform histo-
gram equalization on an image, and then obtain the same result (hopefully) by
invoking the histogram modification operator.

21.1. PROGRAM GENERATION EXERCISES

1.1  Develop a program that:

(a) Opens a program session.

(b) Reads file parameters of a source image stored in a file.

(c) Allocates unsigned integer, monochrome source and destination images.
(d) Reads an unsigned integer, 8-bit, monochrome source image from a file.
(e) Opens an image display window and displays the source image.

(f) Creates a destination image, which is the complement of the source
image.
(g) Opens a second display window and displays the destination image.

(h) Closes the program session.

The executable example complement monochrome ND performs this exer-
cise. The utility source program Display . c provides a PIKS source code exam-
ple for this exercise. Refer to the input_image_file manual page of the PIKS
Programmer’s Reference Manual for file reading information.
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1.2 Develop a program that:

(a)

(b)
(©)
(d)

Creates, in application space, an unsigned integer, 8-bit, 512 x 512 pixel
array of a source ramp image whose amplitude increases from left-to-
right from 0 to 255.

Imports the source image for display.
Creates a destination image by adding value 100 to each pixel

Displays the destination image

What is the visual effect of the display in step (d)? The monadic_arithmetic opera-
tor can be used for the pixel addition. The executable example import ramp
performs this exercise. See the monadic_arithmetic and import_image manual

pages.

21.2. IMAGE MANIPULATION EXERCISES

2.1 Develop a program that passes a monochrome image through the log part of
the monochrome vision model of Figure 2.4-4. Steps:

(a)

(b)
(©)
(d)

Convert an unsigned integer, 8-bit, monochrome source image to float-
ing point datatype.

Scale the source image over the range 1.0 to 100.0.
Compute the source image logarithmic lightness function of Eq. 5.3-4.

Scale the log source image for display.

The executable example monochrome vision performs this exercise. Refer
to the window-level manual page for image scaling. See the unary_real and
monadic_arithmetic manual pages for computation of the logarithmic lightness

function.

2.2 Develop a program that passes an unsigned integer, monochrome image
through a lookup table with a square root function. Steps:

(a)
(b)
(©)
(d)
(e)
®

Read an unsigned integer, 8-bit, monochrome source image from a file.
Display the source image.

Allocate a 256 level lookup table.

Load the lookup table with a square root function.

Pass the source image through the lookup table.

Display the destination image.
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The executable example lookup monochrome ND performs this exercise.

See the allocate_lookup_table, import_lut and lookup manual pages.

2.3 Develop a program that passes a signed integer, monochrome image through a
lookup table with a square root function. Steps:

(a) Read a signed integer, 16-bit, monochrome source image from a file.
(b) Linearly scale the source image over its maximum range and display it.
(c) Allocate a 32,768 level lookup table.

(d) Load the lookup table with a square root function over the source image
maximum range.

(e) Pass the source image through the lookup table.

(f) Linearly scale the destination image over its maximum range and display
it.

The executable example lookup monochrome SD performs this exercise.
See the extrema, window_level, allocate_lookup_table, import_lut and lookup man-
ual pages.

21.3. COLOR SPACE EXERCISES

3.1 Develop a program that converts a linear RGB unsigned integer, 8-bit, color
image to the XYZ color space and converts the XYZ color image back to the
RGB color space. Steps:

(a) Display the RGB source linear color image.

(b) Display the R, G and B components as monochrome images.
(c) Convert the source image to unit range.

(d) Convert the RGB source image to XYZ color space.

(e) Display the X, Y and Z components as monochrome images.
(f) Convert the XYZ destination image to RGB color space.

(g) Display the RGB destination image.

The executable example color conversion RGB_XYZ performs this
exercise. See the extract_pixel_plane, convert_image_datatype, monadic_ arithmetic
and color_conversion_linear manual pages.
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3.2 Develop a program that converts a linear RGB color image to the L*a*b* color
space and converts the L*a*b* color image back to the RGB color space.
Steps:

(a)
(b)
(©)
(d)
(e
()
(8

Display the RGB source linear color image.

Display the R, G and B components as monochrome images.
Convert the source image to unit range.

Convert the RGB source image to L*a*b* color space.

Display the L*, a* and b* components as monochrome images.
Convert the L*a*b* destination image to RGB color space.

Display the RGB destination image.

The executable example color conversion RGB Lab performs this exer-
cise. See the extract_pixel_plane, convert_image_datatype, monadic_ arithmetic and
color_conversion_linear manual pages.

3.3 Develop a program that converts a linear RGB color image to a gamma cor-
rected RGB color image and converts the gamma color image back to the lin-
ear RGB color space. Steps:

(a)
(b)
(©)
(d)
(e
®

(@

()

Display the RGB source linear color image.

Display the R, G and B components as monochrome images.
Convert the source image to unit range.

Perform gamma correction on the linear RGB source image.
Display the gamma corrected RGB destination image.

Display the R, G and B gamma corrected components as monochrome
images.

Convert the gamma corrected destination image to linear RGB color
space.

Display the linear RGB destination image.

The executable example color gamma_correction performs this exercise.
See the extract_pixel_plane, convert_image_datatype, monadic_arithmetic and
gamma_correction manual pages.

3.4 Develop a program that converts a gamma RGB color image to the YCbCr
color space and converts the YCbCr color image back to the gamma RGB
color space. Steps:

(a) Display the RGB source gamma color image.

(b)

Display the R, G and B components as monochrome images.
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(c) Convert the source image to unit range.

(d) Convert the RGB source image to YCbhCr color space.

(e) Display the Y, Cbh and Cr components as monochrome images.

(f) Convert the YCbCr destination image to gamma RGB color space.
(g) Display the gamma RGB destination image.

The executable example color conversion RGB YCbCr performs this
exercise. See the extract_pixel_plane, convert_image_datatype, monadic_ arithmetic
and color_conversion_linear manual pages.

3.5 Develop a program that converts a gamma RGB color image to the IHS color
space and converts the /HS color image back to the gamma RGB color space.
Steps:

(a) Display the RGB source gamma color image.

(b) Display the R, G and B components as monochrome images.
(c) Convert the source image to unit range.

(d) Convert the RGB source image to /HS color space.

(e) Display the I, H and S components as monochrome images.

(f) Convert the THS destination image to gamma RGB color space.
(g) Display the gamma RGB destination image.

The executable example color conversion RGB_IHS performs this exer-
cise. See the extract_pixel_plane, convert_image_datatype, monadic_ arithmetic and
color_conversion_linear manual pages.

21.4. REGION-OF-INTEREST EXERCISES

4.1 Develop a program that forms the complement of an unsigned integer, 8-bit,
512 x 512, monochrome, image under region-of-interest control.

Case 1: Full source and destination ROISs.

Case 2: Rectangular source ROI, upper left corner at (50, 100), lower
right corner at (300, 350) and full destination ROI.

Case 3: Full source ROI and rectangular destination ROI, upper left
corner at (150, 200), lower right corner at (400, 450).

Case 4: Rectangular source ROI, upper left corner at (50, 100), lower
right corner at (300, 350) and rectangular destination ROI, upper left
corner at (150, 200), lower right corner at (400, 450).



Steps:
(a)
(b)
(c)
(d)
(e)
®
(2
(h)
®
)
()
)
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Display the source monochrome image.

Create a constant destination image of value 150.
Complement the source image into the destination image.
Display the destination image.

Create a constant destination image of value 150.

Bind the source ROI to the source image.

Complement the source image into the destination image.
Display the destination image.

Create a constant destination image of value 150.

Bind the destination ROI to the destination image.
Complement the source image into the destination image.

Display the destination image.

(m) Create a constant destination image of value 150.

()

(0)
)

Bind the source ROI to the source image and bind the destination ROI to
the destination image.

Complement the source image into the destination image.

Display the destination image.

The executable example complement monochrome roi performs this exer-
cise. See the image_constant, generate_2d_roi_rectangular, bind_roi and complement
manual pages.

21.5. IMAGE MEASUREMENT EXERCISES

5.1 Develop a program that computes the extrema of the RGB components of an
unsigned integer, 8-bit, color image. Steps:

(a)
(b)

Display the source color image.

Compute extrema of the color image and print results for all bands.

The executable example extrema color performs this exercise. See the
extrema manual page.
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5.2 Develop a program that computes the mean and standard deviation of an
unsigned integer, 8-bit, monochrome image. Steps:

(a) Display the source monochrome image.

(b) Compute moments of the monochrome image and print results.

The executable example moments monochrome performs this exercise. See
the moments manual page.

5.3 Develop a program that computes the first-order histogram of an unsigned
integer, 8-bit, monochrome image with 16 amplitude bins. Steps:
(a) Display the source monochrome image.
(b) Allocate the histogram.
(c) Compute the histogram of the source image.

(d) Export the histogram and print its contents.

The executable example histogram monochrome performs this exercise.
See the allocate_histogram, histogram_1d and export_histogram manual pages.

21.6. QUANTIZATION EXERCISES

6.1 Develop a program that re-quantizes an unsigned integer, 8-bit, monochrome
image linearly to three bits per pixel and reconstructs it to eight bits per pixel.
Steps:

(a) Display the source image.
(b) Perform a right overflow shift by three bits on the source image.

(c) Perform a left overflow shift by three bits on the right bit-shifted source
image.

(d) Scale the reconstruction levels to 3-bit values.
(e) Display the destination image.

The executable example linear quantizer executes this example. See the
bit_shift, extrema and window_level manual pages.

6.2 Develop a program that quantizes an unsigned integer, 8-bit, monochrome
image according to the cube root lightness function of Eq. 5.3-3 and recon-
structs it to eight bits per pixel. Steps:

(a) Display the source image.
(b) Scale the source image to unit range.
(c) Perform the cube root lightness transformation.

(d) Scale the lightness function image to 0 to 255.



(e)
®

(8
(h)
@)
)
(k)
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Perform a right overflow shift by three bits on the source image.

Perform a left overflow shift by three bits on the right bit-shifted source
image.

Scale the reconstruction levels to 3-bit values.

Scale the reconstruction image to the lightness function range.
Perform the inverse lightness function.

Scale the inverse lightness function to the display range.

Display the destination image.

The executable example lightness quantizer executes this example. See
the monadic_arithmetic, unary_integer, window_level and bit_shift manual pages.

21.7. CONVOLUTION EXERCISES

7.1

Develop a program that convolves a test image with a 3 x3 uniform impulse
response array for three convolution boundary conditions. Steps:

(a)

(b)
(©)

(d)

Create a 101 x 101 pixel, real datatype test image consisting of a 2 x2
cluster of amplitude 1.0 pixels in the upper left corner and a single pixel
of amplitude 1.0 in the image center. Set all other pixels to 0.0.

Create a 3 x 3 uniform impulse response array.

Convolve the source image with the impulse response array for the fol-
lowing three boundary conditions: enclosed array, zero exterior, reflected
exterior.

Print a 5 x5 pixel image array about the upper left corner and image cen-
ter for each boundary condition and explain the results.

The executable example convolve boundary executes this example. See the
allocate_neighborhood_array, impulse_rectangular, image_constant, put_pixel,
get_pixel and convolve_2d manual pages.

7.2 Develop a program that convolves an unsigned integer, 8-bit, color image with
a 5x 35 uniform impulse response array acquired from the data object reposi-
tory. Steps:

(a) Display the source color image.

(b) Fetch the impulse response array from the data object repository.

(©)
(d)

Convolve the source image with the impulse response array.

Display the destination image.
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The executable example repository convolve color executes this exam-
ple. See the allocate_neighborhood_array, return_repository_id and convolve_2d man-
ual pages.

21.8. UNITARY TRANSFORM EXERCISES

8.1 Develop a program that generates the Fourier transform log magnitude
ordered display of Figure 8.2-4d for the smpte girl luma image. Steps:

(a) Display the source monochrome image.
(b) Scale the source image to unit amplitude.

(c) Perform a two-dimensional Fourier transform on the unit amplitude
source image with the ordered display option.

(d) Scale the log magnitude according to Eq. 8.2-9 where a = 1.0 and
b =100.0.

(e) Display the Fourier transformed image.
The executable example transform fourier executes this example. See the
convert_image_datatype, monadic_arithmetic, image_constant,

complex_composition, transform_fourier, complex_magnitude, window_level and
unary_real manual pages.

8.2 Develop a program that generates the Hartley transform log magnitude
ordered display of Figure 8.3-2c for the smpte girl luma image by
manipulation of the Fourier transform coefficients of the image. Steps:

(a) Display the source monochrome image.

(b) Scale the source image to unit amplitude.

(c) Perform a two-dimensional Fourier transform on the unit amplitude
source image with the dc term at the origin option.

(d) Extract the Hartley components from the Fourier components.

(e) Scale the log magnitude according to Eq. 8.2-9 where @ = 1.0 and b =
100.0.

(f) Display the Hartley transformed image.

The executable example transform hartley executes this example. See the
convert_image_datatype, monadic_arithmetic, image_constant, complex_composition,
transform_fourier, complex_decomposition, dyadic_arithmetic, complex_magnitude,
window_level and unary_real manual pages.
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8.3 Develop a program that generates the Hadamard transform in 8 x8 pixel
blocks for the smpte girl luma image. Steps:

(a)
(b)
()

(d)

Display the source monochrome image.
Scale the source image to unit amplitude.

Perform a two-dimensional Hadamard transform in 8 x 8 pixel blocks on
the unit amplitude source image.

Display the Hadamard transformed image.

The executable example transform hadamard executes this example. See
the convert_image_datatype, monadic_arithmetic, transform_hadamard, window_
level and unary_real manual pages.

21.9. LINEAR PROCESSING EXERCISES

9.1 Develop a program that performs fast Fourier transform convolution following
the steps of Section 9.3. Execute this program using an 11 x 11 uniform
impulse response array on an unsigned integer, 8-bit, 512 x 512 monochrome
image without zero padding. Steps:

(a)
(b)
(©)
(d)
(e)
®
(8

(h)
(@)
@
(k)

O]

Display the source monochrome image.

Scale the source image to unit range.

Perform a two-dimensional Fourier transform of the source image.
Display the clipped magnitude of the source Fourier transform.
Allocate an 11 x 11 impulse response array.

Create an 11 x 11 uniform impulse response array.

Convert the impulse response array to an image and embed it in a
512 x 512 zero background image.

Perform a two-dimensional Fourier transform of the embedded impulse
image.

Display the clipped magnitude of the embedded impulse Fourier transform.
Multiply the source and embedded impulse Fourier transforms.

Perform a two-dimensional inverse Fourier transform of the product
image.

Display the destination image.

(m) Printout the erroneous pixels along a mid image row.



726 PIKS IMAGE PROCESSING PROGRAMMING EXERCISES

The executable example fourier filtering executes this example. See the
monadic_arithmetic, image_constant, complex_composition, transform_fourier,
complex_magnitude, allocate_neighborhood_array, impulse_rectangular, convert_
array_to_image, dyadic_complex and complex_decomposition manual pages.

21.10. IMAGE ENHANCEMENT EXERCISES

10.1 Develop a program that displays the O component of a Y/Q color image over

its full dynamic range. Steps:

(a) Display the source monochrome RGB image.

(b) Scale the RGB image to unit range and convert it to the Y/Q space.

(c) Extract the Q component image.

(d) Compute the amplitude extrema.

(e) Use the window_level conversion function to display the Q component.
The executable example Q display executes this example. See the

monadic_arithmetic, color_conversion_linear, extrema, extract_pixel_plane and
window_level manual pages.

10.2 Develop a program to histogram equalize an unsigned integer, 8-bit, mono-
chrome image. Steps:
(a) Display the source monochrome image.
(b) Compute the image histogram.
(c) Compute the image cumulative histogram.
(d) Load the image cumulative histogram into a lookup table.
(e) Pass the image through the lookup table.
(f) Display the enhanced destination image.
The executable example histogram equalization executes this example.

See the allocate_histogram, histogram_Ild, export_histogram, allocate_lookup_
table, export_lut and lookup_table manual pages.

10.3 Develop a program to perform outlier noise cleaning of the unsigned inte-
ger, 8-bit, monochrome image peppers replacement noise fol-
lowing the algorithm of Figure 10.3-9. Steps:

(a) Display the source monochrome image.
(b) Compute a 3 x 3 neighborhood average image.

(c) Display the neighborhood image.
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(d) Create a magnitude of the difference image between the source image and
the neighborhood image.

(e) Create a Boolean mask image which is TRUE if the magnitude difference
image is greater than a specified error tolerance, e.g. 15%.

(f) Convert the mask image to a ROI and use it to generate the outlier desti-
nation image.

(g) Display the destination image.

The executable example outlier executes this example. See the return_
repository_id, convolve_2d, dyadic_predicate, allocate_roi, convert_image_ to_roi,
bind_roi and convert_image_datatype manual pages.

10.4 Develop a program that performs linear edge crispening of an unsigned inte-
ger, 8-bit, color image by convolution. Steps:

(a) Display the source color image.

(b) Import the Mask 3 impulse response array defined by Eq.10.4-1c.
(c) Convert the ND source image to SD datatype.

(d) Convolve the color image with the impulse response array.

(e) Clip the convolved image over the dynamic range of the source image to
avoid amplitude undershoot and overshoot.

(f) Display the clipped destination image.
The executable example edge crispening executes this example. See the

allocate_neighborhood_array, import_neighborhood_array, convolve_2d, extrema
and window_level manual pages.

10.5 Develop a program that performs 7 x7 plus-shape median filtering of the
unsigned integer, 8-bit, monochrome image peppers replacement
_noise. Steps:

(a) Display the source monochrome image.
(b) Create a 7x 7 Boolean mask array.
(c) Perform median filtering.
(d) Display the destination image.
The executable example filtering median plus7 executes this example.

See the allocate_neighborhood_array, import_neighborhood_array and filtering
_median manual pages.
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21.11. IMAGE RESTORATION MODELS EXERCISES

11.1 Develop a program that creates an unsigned integer, 8-bit, monochrome image
with zero mean, additive, uniform noise with a signal-to-noise ratio of 10.0.
The program should execute for arbitrary size source images. Steps:

(a)
(b)

(@)
(d)
(e)

()
()

(h)
®

Display the source monochrome image.

In application space, create a unit range noise image array using the
C math.h function rand.

Import the noise image array.
Display the noise image array.

Scale the noise image array to produce a noise image array with zero
mean and a SNR of 10.0.

Compute the mean and standard deviation of the noise image.

Read an unsigned integer, 8-bit monochrome image source image file and
normalize it to unit range.

Add the noise image to the source image and clip to unit range.

Display the noisy source image.

The executable example additive noise executes this example. See the
monadic_arithmetic, import_image, moments, window_level and dyadic_arithmetic
manual pages.

11.2 Develop a program that creates an unsigned integer, 8-bit, monochrome image
with replacement impulse noise. The program should execute for arbitrary
size source images. Steps:

(a)
(b)

(©)
(d)
(e)

®

Display the source monochrome image.

In application space, create a unit range noise image array using the
Cmath.h function rand.

Import the noise image array.
Read a source image file and normalize to unit range.

Replace each source image pixel with 0.0 if the noise pixel is less than
1.0%, and replace each source image pixel with 1.0 if the noise pixel is
greater than 99%. The replacement operation can be implemented by
image copying under ROI control.

Display the noisy source image.

The executable example replacement noise executes this example. See the
monadic_arithmetic, import_image, dyadic_predicate, allocate_roi, bind_roi,
convert_image_datatype and dyadic_arithmetic manual pages.
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21.12. IMAGE RESTORATION EXERCISES

12.1 Develop a program that computes a 512 x 512 Wiener filter transfer function
for a 5x35 pyramid blur impulse response array and white noise with a SNR
of 10.0. Steps:

(a) Fetch the impulse response array from the repository.

(b) Convert the impulse response array to an image and embed it in a
512 x 512 zero background array.

(c) Compute the two-dimensional Fourier transform of the embedded
impulse response array.

(d) Form the Wiener filter transfer function according to Eq. 12.2-23.
(e) Display the magnitude of the Wiener filter transfer function.
The executable example wiener filter executes this example. See the

return_repository_id,  transform_fourier,  image_constant,  complex_conjugate,
dyadic_arithmetic and complex_magnitude manual pages.

12.2 Develop a program that performs Wiener filtering on the image

peppers blurred noisy using the Wiener filter generated by Exercise
12.1. Steps:

(a) Display the source image.

(b) Import the Wiener filter transfer function of Ex. 12.1.

(c) Perform linear filtering of the source image with the transfer function.
(d) Display the restored image.

The executable example wiener filtering executes this example. See the
import_static_array and filtering_linear manual pages.

21.13. GEOMETRICAL IMAGE MODIFICATION EXERCISES

13.1 Develop a program that minifies an unsigned integer, 8-bit, monochrome
image by a factor of two and rotates the minified image by 45 degrees about
its center using bilinear interpolation. Display the geometrically modified
image. Steps:

(a) Display the source monochrome image.

(b) Set the global interpolation mode to bilinear.
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(c) Set the first work image to zero.
(d) Minify the source image into the first work image.
(e) Set the second work image to zero.
(f) Translate the first work image into the center of the second work image.
(g) Set the destination image to zero.
(h) Rotate the second work image about its center into the destination image.
(i) Display the destination image.
The executable example minify rotate executes this example. See the

image_constant, resize, translate, rotate and set_globals manual pages.

13.2 Develop a program that performs shearing of the rows of an unsigned integer,
8-bit, monochrome image using the warp_lut operator such that the last image
row is shifted 10% of the row width and all other rows are shifted proportion-
ally. Steps:

(a) Display the source monochrome image.

(b) Set the global interpolation mode to bilinear.
(c) Set the warp polynomial coefficients.

(d) Perform polynomial warping.

(e) Display the destination image.

The executable example shear executes this example. See the set_globals,
image_constant and warp_lut manual pages.

21.14. MORPHOLOGICAL IMAGE PROCESSING EXERCISES

14.1 Develop a program that reads the 64 x 64 , Boolean test image boolean test
and dilates it by one and two iterations with a 3 x 3 structuring element. Steps:

(a) Read the source image and zoom it by a factor of 8:1.
(b) Create a 3 x 3 structuring element array.

(c) Dilate the source image with one iteration.

(d) Display the zoomed destination image.

(e) Dilate the source image with two iterations.

(f) Display the zoomed destination image.
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The executable example boolean dilation executes this example. See the
allocate_neighborhood_array,  import_neighborhood_array,  erosion_dilation_
boolean, zoom and boolean_display manual pages.

14.2 Develop a program that reads the 64 x 64, Boolean test image boolean
test and erodes it by one and two iterations with a 3 x 3 structuring element.
Steps:

(a) Read the source image and zoom it by a factor of 8:1.
(b) Create a 3 x3 structuring element array.
(c) Erode the source image with one iteration.

(d) Display the zoomed destination image.

(e) Erode the source image with two iterations.

(f) Display the zoomed destination image.

The executable example boolean erosion executes this example. See the
allocate_neighborhood_array, import_neighborhood_array, erosion_dilation
_boolean, zoom and boolean_display manual pages.

14.3 Develop a program that performs gray scale dilation on an unsigned integer, 8-
bit, monochrome image with a 5x5 zero-value structuring element and a
5 x5 TRUE state mask. Steps:

(a) Display the source image.
(b) Create a 5x 5 Boolean mask.
(c) Perform grey scale dilation on the source image.
(d) Display the destination image.
The executable example dilation grey ND executes this example. See the

allocate_neighborhood_array, import_neighborhood_array and erosion_dilation
_ grey manual pages.

14.4 Develop a program that performs gray scale erosion on an unsigned integer, 8-
bit, monochrome image with a 5 X 5 zero-value structuring element and a
5 x5 TRUE state mask. Steps:

(a) Display the source image.
(b) Create a 5% 5 Boolean mask.
(c) Perform grey scale erosion on the source image.

(d) Display the destination image.
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The executable example erosion grey ND executes this example. See the
allocate_neighborhood_array, import_neighborhood_array and erosion_dilation
_gray manual pages.

21.15. EDGE DETECTION EXERCISES

15.1 Develop a program that generates the Sobel edge gradient according to Figure
15.2-1 using a square root sum of squares gradient combination. Steps:
(a) Display the source image.

(b) Fetch the horizontal and vertical Sobel impulse response arrays from the
repository.

(c) Convolve the source image with the horizontal Sobel.
(d) Display the Sobel horizontal gradient.
(e) Convolve the source image with the vertical Sobel.
(f) Display the Sobel vertical gradient.
(g) Form the square root sum of squares of the gradients.
(h) Display the Sobel gradient.
The executable example sobel gradient executes this example. See the

allocate_neighborhood_array, return_repository_id, convolve_2d, unary_real and
dyadic_arithmetic manual pages.

15.2 Develop a program that generates the Laplacian of Gaussian gradient for a
11 x 11 impulse response array and a standard deviation of 2.0. Steps:

(a) Display the source image.
(b) Allocate the Laplacian of Gaussian impulse response array.
(c) Generate the Laplacian of Gaussian impulse response array.

(d) Convolve the source image with the Laplacian of Gaussian impulse
response array.

(e) Display the Laplacian of Gaussian gradient.
The executable example LoG gradient executes this example. See the

allocate_neighborhood_array, impulse_laplacian_of_gaussian and convolve_2d
manual pages.
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21.16. IMAGE FEATURE EXTRACTION EXERCISES

16.1 Develop a program that generates the 7 x 7 moving window mean and standard
deviation features of an unsigned integer, 8-bit, monochrome image. Steps:
(a) Display the source image.
(b) Scale the source image to unit range.
(c) Create a 7 x 7 uniform impulse response array.

(d) Compute the moving window mean with the uniform impulse response
array.

(e) Display the moving window mean image.

(f) Compute the moving window standard deviation with the uniform impulse
response array.

(g) Display the moving window standard deviation image.
The executable example amplitude features executes this example. See the

allocate_neighborhood_array, impulse_rectangular, convolve_2d, dyadic_arithmetic
and unary_real manual pages.

16.2 Develop a program that computes the mean, standard deviation, skewness,
kurtosis, energy and entropy first-order histogram features of an unsigned
integer, 8-bit, monochrome image. Steps:

(a) Display the source image.
(b) Compute the histogram of the source image.

(c) Export the histogram and compute the histogram features.

The executable example histogram features executes this example. See
the allocate_histogram, histogram_1d and export_histogram manual pages.

16.3 Develop a program that computes the nine Laws texture features of an
unsigned integer, 8-bit, monochrome image. Use a 7 x 7 moving window to
compute the standard deviation. Steps:

(a) Display the source image.
(b) Fetch the nine Laws impulse response arrays from the repository.

(c) For each Laws array:
convolve the source image with the Laws array.

compute the moving window mean of the Laws convolution.
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compute the moving window standard deviation of the Laws
convolution image.

display the Laws texture features.

The executable example laws features executes this example. See the
allocate_neighborhood_array, impulse_rectangular, return_repository_id, con-
volve_2d, dyadic_arithmetic and unary_real manual pages.

21.17. IMAGE SEGMENTATION EXERCISES

17.1 Develop a program that thresholds the monochrome image parts and displays
the thresholded image. Determine the threshold value that provides the best
visual segmentation. Steps:

(a) Display the source image.
(b) Threshold the source image into a Boolean destination image.

(c) Display the destination image.

The executable example threshold executes this example. See the threshold
and boolean_display manual pages.

17.2 Develop a program that locates and tags the watershed segmentation local
minima in the monochrome image segmentation test. Steps:

(a) Display the source image.

(b) Generate a 3 x 3 Boolean mask.

(c) Erode the source image into a work image with the Boolean mask.
(d) Compute the local minima of the work image.

(e) Display the local minima image.

The executable example watershed executes this example. See the
erosion_dilation_grey and dyadic_predicate manual pages.

17.3 Develop a program that performs the Hough transform on the monochrome
image building. Steps:

(a) Display the source image.
(b) Execute the Hough transform operator.
(c) Display the destination image.

The executable example hough transform executes this example. See the
hough_transform manual page.
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21.18. SHAPE ANALYSIS EXERCISES

18.1 Develop a program that computes the shape metrics of the monochrome image
boolean_ellipse. Steps:
(a) Display the source image.
(b) Execute the shape metrics operator.

(c) print the shape metrics.

The executable example shape metrics executes this example. See the
shape_metrics manual page.

18.2 Develop a program that computes the scaled second-order central moments of
the monochrome image ellipse. Steps:
(a) Display the source image.
(b) Normalize the source image to unit range.
(c) Export the source image and perform the computation in application

space in double precision.

The executable example spatial moments executes this example. See the
monadic_arithmetic and export_image manual pages.

21.19. IMAGE DETECTION AND REGISTRATION EXERCISES

19.1 Develop a program that performs normalized cross-correlation template
matching of the monochrome source image I_source and the monochrome
template image L _template using the convolution operator as a means of
correlation array computation. Steps:

(a) Display the source image.
(b) Display the template image.

(c) Rotate the template image 180 degrees and convert it to an impulse
response array.

(d) Convolve the source image with the impulse response array to form the
numerator of the cross-correlation array.

(e) Display the numerator image.

(f) Square the source image and compute its moving window average energy
by convolution with a rectangular impulse response array to form the
denominator of the cross-correlation array.

(g) Display the denominator image.
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(h) Form the cross-correlation array image.

(i) Display the cross-correlation array image.

(j) Threshold the cross-correlation array image.

(k) Display the thresholded cross-correlation array image.
Note, it is necessary to properly scale the source and template images to obtain valid
results. The executable example template executes this example. See the
allocate_neighborhood_array,  flip_spin_transpose, convert_image_to_array,

impulse_rectangular, convolve_2d, monadic_arithmetic and threshold manual
pages.

19.2 Develop a program that executes the cross-correlation operator on the mono-
chrome source image washington irl and the monochrome source
image washington ir2 using the cross-correlation operator. Steps:

(a) Display the first source image.

(b) Display the second source image.

(c) Execute the cross-correlation operator.

(d) Convert the cross-correlation to a destination image.
(e) Display the destination image.

The executable example cross correlation executes this example. See the
cross_correlation and convert_array_to_image manual pages.



APPENDIX 1

VECTOR-SPACE ALGEBRA CONCEPTS

This appendix contains reference material on vector-space algebra concepts used in
the book.

Al.1. VECTOR ALGEBRA
This section provides a summary of vector and matrix algebraic manipulation proce-
dures utilized in the book. References 1 to 5 may be consulted for formal derivations

and proofs of the statements of definition presented here.

Vector. A N x 1 column vector f is a one-dimensional vertical arrangement,

]
£2)

S (n)

) (Al.1-1)

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
Copyright © 2007 by John Wiley & Sons, Inc.
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of the elements f(n), where n =1, 2,..., N. A 1 x N row vector h is a one-dimensional
horizontal arrangement

h = [a(1) hQ2) ... h(n) ... h(V)] (A1.1-2)

of the elements h(n), where n = 1, 2,..., N. In this book, unless otherwise indicated,
all boldface lowercase letters denote column vectors. Row vectors are indicated by
the transpose relation

= [ @) - fi) ) | (AL.1-3)

Matrix. A Mx N matrix F is a two-dimensional arrangement

F(1,1)  F(1,2) F(1,N)
Fo | FQ 1) FQ2,2) F(2,N)
FOM, 1) F(M,2) F(M, N)

(Al.1-4)

of the elements F(m, n) into rows and columns, where m=1,2,...., Mandn=1, 2,...,
N. The symbol 0 indicates a null matrix whose terms are all zeros. A diagonal matrix
is a square matrix, M = N, for which all off-diagonal terms are zero; that is,
F(m, n) = 0 if m#n. An identity matrix denoted by I is a diagonal matrix whose
diagonal terms are unity. The identity symbol is often subscripted to indicate its
dimension: I is a Nx N identity matrix. A submatrix F, is a matrix partition of a
larger matrix F of the form

0 (A1.1-5)

Matrix Addition. The sum C = A + B of two matrices is defined only for matrices
of the same size. The sum matrix C is a M xN matrix whose elements are
C(m,n) = A(m, n) + B(m, n) .

Matrix Multiplication. The product C = AB of two matrices is defined only when
the number of columns of A equals the number of rows of B. The M x N product
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matrix C of the matrix A and the P x N matrix B is a matrix whose general element
is given by

P
C(m,n) = z A(m, p)B(p, n) (A1.1-6)

p=1

Matrix Inverse. The matrix inverse, denoted by A‘l, of a square matrix A has the
property that AA"' =1 and A'A = 1.If such a matrix A~ exists, the matrix A is
said to be nonsingular; otherwise, A is singular. If a matrix possesses an inverse, the
inverse is unique. The matrix inverse of a matrix inverse is the original matrix. Thus

A = A (A1.1-7)

If matrices A and B are nonsingular,

[AB]' = B'A™! (A1.1-8)

If matrix A is nonsingular, and the scalar k= 0, then

1

[KA] = %A* (A1.1-9)

Inverse operators of singular square matrices and of nonsquare matrices are consid-
ered in Section A1.3. The inverse of the partitioned square matrix

F- Fu Flz} (A1.1-10)
Fy Fyy
may be expressed as
-1 -1 -1 ~1 -1
F_l — [Fy) = FpFpFyl “F FplFy = Fy Fp Fppl (A1.1-11)

1 1 -1 1 -1
_F22F21[F11_F12F22F21] [F22_F21F11F12]

provided that F,, andF,, are nonsingular.
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Matrix Transpose. The transpose of a M x N matrix A is a N x M matrix denoted by

AT, whose rows are the columns of A and whose columns are the rows of A. For any
matrix A,

A = A (A1.1-12)

IfA= AT, then A is said to be symmetric. The matrix products AAT and ATA are
symmetric. For any matrices A and B,

(AB]” = BTAT (A1.1-13)

If A is nonsingular, then Al s nonsingular and
[AT] =[A"] (Al.1-14)

Matrix Direct Product. The left direct product of a Px Q matrix A and a MxN
matrix B is a PM x ON matrix defined by

B(1, DA  B(1,2)A B(1, N)A
C=A®B=| BCGDA  B(Z2)A A (A1.1-15)
B(M, 1)A B(M, N)A

A right direct product can also be defined in a complementary manner. In this book,
only the left direct product will be employed. The direct products A® B and B® A
are not necessarily equal. The product, sum, transpose, and inverse relations are:

[A®B][C®D] = [AC] ® [BD] (A1.1-16)
[A+B]®C = A®C+B®C (A1.1-17)
[A®B]' = AT®B” (A1.1-18)
[A®B]' = [A'®@B '] (A1.1-19)

Matrix Trace. The trace of a Nx N square matrix F is the sum of its diagonal ele-
ments denoted as

N
tr{F} = z F(n, n) (A1.1-20)

n=1
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If A and B are square matrices,
tr{AB} = tr{BA} (A1.1-21)
The trace of the direct product of two matrices equals
tr{A ® B} = tr{A}tr{B} (A1.1-22)
Vector Norm. The Euclidean vector norm of the Nx 1 vector f is a scalar defined as

Ifil = £t (A1.1-23)

Matrix Norm. The Euclidean matrix norm of the M x N matrix F is a scalar defined
as

IFl = tr[FF] (A1.1-24)

Matrix Rank. A Nx N matrix A is a rank R matrix if the largest nonsingular square
submatrix of A is a R x R matrix. The rank of a matrix is utilized in the inversion of
matrices. If matrices A and B are nonsingular, and C is an arbitrary matrix, then

rank{C} = rank{AC} = rank{CA} = rank{ACB} (A1.1-25)
The rank of the product of matrices A and B satisfies the relations

rank{AB} <rank{A} (A1.1-26a)
rank{AB} <rank{B} (A1.1-26b)

The rank of the sum of matrices A and B satisfies the relations
rank{A + B} <rank{A} +rank{B} (A1.1-27)

Vector Inner Product. The inner product of the Nx 1 vectors f and g is a scalar

k=gt (A1.1-28)
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where
N
k = Z g(n) f(n) (A1.1-29)
n=1

Vector Outer Product. The outer product of the M x 1 vector g and the Nx 1 vector
f is a matrix

A =gf (A1.1-30)
where A(m,n) = g(m)f(n) .
Quadratic Form. The quadratic form of a Nx 1 vector f is a scalar

k=t Af (A1.1-31)
where A is a N x N matrix. Often, the matrix A is selected to be symmetric.

Vector Differentiation. For a symmetric matrix A, the derivative of the quadratic
form x' Ax with respect to X is

Ax'Ax] _
ox

2Ax (A1.1-32)

A1.2. SINGULAR-VALUE MATRIX DECOMPOSITION

Any arbitrary M x N matrix F of rank R can be decomposed into the sum of a
weighted set of unit rank M x N matrices by a singular-value decomposition (SVD)
(6-8).

According to the SVD matrix decomposition, there exist a M x M unitary matrix
U and a Nx N unitary matrix V for which

U'Fv = A2 (A1.2-1)
where
xl/z(l) 0
ALQ _
kl/z(l)
0 0

(A1.2-2)
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is a M x N matrix with a general diagonal entry kl/z(j) called a singular value of

F. Because U and V are unitary matrices, vu’ = I,, and vy’ = I, . Conse-
quently,

F=UA"?V (A1.2-3)

The columns of the unitary matrix U are composed of the eigenvectors u,, of the
symmetric matrix FF. The defining relation is

}\.(1) 0
vFFU = | 5 (A1.2-4)
A(R)

where A(j) are the nonzero eigenvalues of FF’. Similarly, the columns of V are the
. . .o T
eigenvectors v, of the symmetric matrix F'F as defined by

ML) e 0

vIFTFV = : (A1.2-5)
MR) -

where the A(j) are the corresponding nonzero eigenvalues of F'F. Consistency is
easily established between Eqgs. A1.2-3 to A1.2-5. It is possible to express the matrix
decomposition of Eq. A1.2-3 in the series form

R
F=3 22(uy/ (A1.2-6)

The outer products ujva of the eigenvectors form a set of unit rank matrices each
of which is scaled by a corresponding singular value of F. The consistency of
Eq. A1.2-6 with the previously stated relations can be shown by its substitution
into Eq. A1.2-1, which yields

R
A7 =uTFV = 3 G0y (A1.2-7)

J=1
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It should be observed that the vector product UTu]. is a column vector with unity in
its jth elements and zeros elsewhere. The row vector resulting from the product viv
is of similar form. Hence, upon final expansion, the right-hand side of Eq. A1.2-7
reduces to a diagonal matrix containing the singular values of F.

The SVD matrix decomposition of Eq. A1.2-3 and the equivalent series represen-
tation of Eq. A1.2-6 apply for any arbitrary matrix. Thus the SVD expansion can be
applied directly to discrete images represented as matrices. Another application is
the decomposition of linear operators that perform superposition, convolution or
general transformation of images in vector form.

A1.3. PSEUDOINVERSE OPERATORS

A common task in linear signal processing is to invert the transformation equation
p=Tf (A1.3-1)

to obtain the value of the O x 1 input data vector f, or some estimate f of the data
vector, in terms of the P x 1 output vector p. If T is a square matrix, obviously

f=[T1"p (A1.3-2)

provided that the matrix inverse exists. If T is not square, a O x P matrix pseudoin-
verse operator T* may be used to determine a solution by the operation

f=T" (A1.3-3)

If a unique solution does indeed exist, the proper pseudoinverse operator will pro-
vide a perfect estimate in the sense that f = f. That is, it will be possible to extract
the vector f from the observation p without error. If multiple solutions exist, a
pseudoinverse operator may be utilized to determine a minimum norm choice of
solution. Finally, if there are no exact solutions, a pseudoinverse operator can pro-
vide a best approximate solution. This subject is explored further in the following
sections. References 5, 6 and 9 provide background and proofs of many of the fol-
lowing statements regarding pseudoinverse operators.

The first type of pseudoinverse operator to be introduced is the generalized
inverse T ™, which satisfies the following relations:

TT =[TT"]" (A1.3-4a)

TT=[T"T)" (A1.3-4b)
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TT"T=T (A1.3-4c)

T-TT =T" (A1.3-4d)

The generalized inverse is unique. It may be expressed explicitly under certain cir-
cumstances. If P> Q, the system of equations of Eq. A1.3-1 is said to be overdeter-
mined; that is, there are more observations p than points f to be estimated. In this
case, if T is of rank Q, the generalized inverse may be expressed as

T =[T/T]'T” (A1.3-5)

At the other extreme, if P<Q, Eq. A1.3-1 is said to be underdetermined. In this
case, if T is of rank P, the generalized inverse is equal to

T-=T/T1'T]! (A1.3-6)

It can easily be shown that Eqs. A1.3-5 and A1.3-6 satisfy the defining relations of
Eq. A1.3-4. A special case of the generalized inverse operator of computational
interest occurs when T is direct product separable. Under this condition

T =T, ®T, (A1.3-7)

where T, and T are the generalized inverses of the row and column linear oper-
ators.

Another type of pseudoinverse operator is the least-squares inverse T$, which sat-
isfies the defining relations

T =T (A1.3-82)
TTS = [TT%7 (A1.3-8b)

Finally, a conditional inverse T# is defined by the relation

TT*T=T (A1.3-9)

Examination of the defining relations for the three types of pseudoinverse operators
reveals that the generalized inverse is also a least-squares inverse, which in turn is
also a conditional inverse. Least-squares and conditional inverses exist for a given
linear operator T; however, they may not be unique. Furthermore, it is usually not
possible to explicitly express these operators in closed form.
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The following is a list of useful relationships for the generalized inverse operator
of a Px Q matrix T.

Generalized inverse of matrix transpose:
[T-=[T7" (A1.3-10)
Generalized inverse of generalized inverse:
T =T (A1.3-11)
Rank:
rank{T~} = rank{T} (A1.3-12)
Generalized inverse of matrix product:
[T'T)-=[T)7T7]~ (A1.3-13)
Generalized inverse of orthogonal matrix product:
[ATB]~=BTT-AT (A1.3-14)

where A is a Px P orthogonal matrix and B is a O x O orthogonal matrix.

Al.4. SOLUTIONS TO LINEAR SYSTEMS

The general system of linear equations specified by
p=Tf (Al.4-1)
where T is a P x O matrix may be considered to represent a system of P equations in

Q unknowns. Three possibilities exist:

1. The system of equations has a unique solution f for which Tf = p.
2. The system of equations is satisfied by multiple solutions.

3. The system of equations does not possess an exact solution.



SOLUTIONS TO LINEAR SYSTEMS 747

If the system of equations possesses at least one solution, the system is called
consistent; otherwise, it is inconsistent. The lack of a solution to the set of equa-
tions often occurs in physical systems in which the vector p represents a
sequence of physical measurements of observations that are assumed to be gen-
erated by some nonobservable driving force represented by the vector f. The
matrix T is formed by mathematically modeling the physical system whose out-
put is p. For image restoration, f often denotes an ideal image vector, p is a
blurred image vector and T models the discrete superposition effect causing the
blur. Because the modeling process is subject to uncertainty, it is possible that
the vector observations p may not correspond to any possible driving function f.
Thus, whenever Eq. A1.4-1 is stated, either explicitly or implicitly, its validity
should be tested.

Consideration is now given to the existence of solutions to the set of equations
p = Tf. It is clear from the formation of the set of equations that a solution will
exist if and only if the vector p can be formed by a linear combination of the col-
umns of T. In this case, p is said to be in the column space of T. A more systematic
condition for the existence of a solution is given by (5):

A solution to p = Tf exists if and only if there is a conditional inverse T of T
for which TTp = p.

This condition simply states that the conditional inverse mapping T* from obser-
vation to image space, followed by the reverse mapping T from image to observa-
tion space, must yield the same observation vector p for a solution to exist. In the
case of an underdetermined set of equations (P < Q), when T is of full row rank P, a
solution exists; in all other cases, including the overdetermined system, the exist-
ence of a solution must be tested.

A1.4.1. Solutions to Consistent Linear Systems

On establishment of the existence of a solution of the set of equations
p=Tf (Al1.4-2)

investigation should be directed toward the character of the solution. Is the solu-
tion unique? Are there multiple solutions? What is the form of the solution?
The latter question is answered by the following fundamental theorem of linear
equations (5).

If a solution to the set of equations p = Tf exists, it is of the general form

f =T + [1- T*Tv (A1.4-3)

where T is the conditional inverse of T and v is an arbitrary QO x 1 vector.



748 VECTOR-SPACE ALGEBRA CONCEPTS

Because the generalized inverse T~ and the least-squares inverse T are also con-
ditional inverses, the general solution may also be stated as

f=T% + [I- T*T)v (Al.4-4a)

f

T p+[I-TTlv (A1.4-4b)

Clearly, the solution will be unique if T#T = I In all such cases, T"T =L By exam-
ination of the rank of T~ T, it is found that (1):

If a solution to p = Tf exists, the solution is unique if and only if the rank of the
Px Q matrix T is equal to Q.

As aresult, it can be immediately deduced that if a solution exists to an underde-
termined set of equations, the solution is of multiple form. Furthermore, the only
solution that can exist for an overdetermined set of equations is a unique solution. If
Eq. A1.4-2 is satisfied exactly, the resulting pseudoinverse estimate

f=T*p=T"Tf (A1.4-5)

where T* represents one of the pseudoinverses of T, may not necessarily be perfect
because the matrix product T*"I: may not equate to an identity matrix. The residual
estimation error between f and f is commonly expressed as the least-squares differ-
ence of the vectors written as

£, = (-1 [f-1] (A1.4-6a)
or equivalently,

£, = t{[f-f)[f-1] } (A1.4-6b)
Substitution of Eq. A1.4-5 into Eq. A1.4-6a yields
Ep = 11— (T*T)T[1 - (T*T)If (A1.4-7)

The choice of T* that minimizes the estimation error of Eq. A1.4-6 can be deter-
mined by setting the derivative of £, with respect to f, to zero. From Eq. A1.1-32

o,
a_fE =0 =2(I—(T*D)|[I - (T*T) f (A1.4-8)
Equation A1.4-8 is satisfied if T* = T~ is the generalized inverse of T. Under this
condition, the residual least-squares estimation error reduces to
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£, =1 - (TT)]f (A1.4-9a)

or
£, = t{f[1- (T~ T)]} (A1.4-9b)

The estimation error becomes zero, as expected, if T™T = I. This will occur, for
example, if T~ is a rank Q generalized inverse as defined in Eq. A1.3-5.

A1.4.2. Approximate Solution to Inconsistent Linear Systems

Inconsistency of the system of equations p = Tf means simply that the set of equa-
tions does not form an equality for any potential estimate f = f. In such cases, the
system of equations can be reformulated as

p = Tf+e(f) (A1.4-10)

where e(f) is an error vector dependent on f. Now, consideration turns toward the
determination of an estimate f that minimizes the least-squares modeling error
expressed in the equivalent forms

z,, = le(D]'[e(D)] = [p-Tfl [p—Tf] (Al.4-11a)

or

z,, = tr{le(HI[e()]'} = tr{[p-THp-Tf } (A1.4-11b)

Let the matrix T denote the pseudoinverse that gives the estimate
f=T" (A1.4-12)

Then, adding and subtracting the quantity TT*p inside the brackets of Eq. A1.4-11a
yields

Ey = [A=TTHp + T(T*p— DO [A-TTHp + T(T*p-1)]  (A1.4-13)
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Expansion then gives
Ty = [(L- TTHPI [ - TTHp] + [T(T*p - HI [T(T*p - 1)]

+ (A= TTHp) [T(T*p - 1)] + [T(T*p - HI'[A-TT*p] (Al4-14)

The two cross-product terms will be equal zero if TT*T = T and TT* = [TT*]”. These
are the defining conditions for T* to be a least-squares inverse of T, (i.e., T* = T$ ).
Under these circumstances, the residual error becomes equal to the sum of two posi-
tive terms:

T = [A =TT [A - TTHp] + [T(T¥p - DT - 1)]  (A1.4-15)

The second term of Eq. Al 4 15 goes to zero when f equals the least-squares
pseudoinverse estimate, f = T p. and the residual error reduces to

v =p [1-TT%p (A1.4-16)

If TTS = L, the residual error goes to zero, as expected.

The least-squares pseudoinverse solution is not necessarily unique. If the pseudo-
inverse is further restricted such that T*'TT* = T and T*T = [T*T]” so that T* is a
generalized inverse, (i.e. T* = T"), it can be shown that the generalized inverse esti-
mate, f =T p, is a minimum norm solution in the sense that

>
- >
I\
-, 2
—— 2

(A1.4-17)

for any least-squares estimate f. That is, the sum of the squares of the elements of
the estimate is a minimum for all possible least-squares estimates. If T~ is a rank-Q
generalized inverse, as defined in Eq. A1.3-5, TT™ is not necessarily an identity
matrix, and the least-squares modeling error can be evaluated by Eq. A1.4-16. In the
case for which T is a rank-P generalized inverse, as defined in Eq. Al.4-15,
TT ™ =1, and the least-squares modeling error is zero.
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APPENDIX 2

COLOR COORDINATE CONVERSION

There are two basic methods of specifying a color in a three primary color system:
by its three tristimulus values (7,, T,, T5) , and by its chromaticity (#,,¢,) and its
luminance (Y). Given either one of these representations, it is possible to convert
from one primary system to another.

CASE 1. TRISTIMULUS TO TRISTIMULUS CONVERSION

Let (7, T,, T;) represent the tristimulus values in the original coordinate system
and (T4, Tp, T3) the tristimulus values in a new coordinate system. The conversion
between systems is given by

Ty =my Ty +mpTy+mT, (A2-1)
T, = My Ty +myy Ty + mys Ty (A2-2)
Ty = my Ty +myy Ty + mys Ty (A2-3)

where the m;; are the coordinate conversion constants.

CASE 2. TRISTIMULUS TO LUMINANCE/CHROMINANCE CONVERSION

Let
T

=1 A2-4
i T, +T,+T, ( )
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T,
ty =
T)+T,+ T,

and

i 7
%1+%2+%3

~
=
1l

. 7,
%1+%2+7:3

(A2-5)

(A2-6)

(A2-7)

represent the chromaticity coordinates in the original and new coordinate systems,

respectively. Then, from Eqs. A2-1 to A2-3,

Y- BiT) + BT, +BsT,
| =
ByTy +BsT,+ P75

i = By Ty +BgT, + PoTs
ByTy +BsT,+ P75

where
By =my
By = myy
By = my;

By = myy+myy +my

Bs = myy+my, +my,

Be = myz+myy+my;

(A2-8)

(A2-9)

(A2-10a)

(A2-10b)

(A2-10c)

(A2-10d)

(A2-10e)

(A2-10f)

(A2-10g)
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Bg = my, (A2-10h)
By = mysy (A2-101)

and m,; are conversion matrix elements from the (7,7, T5) to the (T, Ty, f3)
coordinate system. The luminance signal is related to the original tristimulus values
by

Y = wy Ty +wyy Ty + wyy Ty (A2-11)

where the w,; are conversion elements from the (7|, T,, T;) to the (X, Y, Z) coordi-
nate systems in correspondence with Eq. A2-2.

CASE 3. LUMINANCE/CHROMINANCE TO LUMINANCE
CHROMINANCE CONVERSION

Substitution of

T, = t(T\+T,+Ty) (A2-12)
T, = t,(T,+ T, + Ty) (A2-13)
Ty = (1=t,= t,) (T, + Ty + T3) (A2-14)

into Eqs. A2-8 and A2-9 gives

~ Oty + 0lyty + O
= ot 50 W B et (A2-15)
O£4tl+0(5t2+0(6

~ Oty + Olgly + O
= L1 82 9 (A2-16)
Olyly + Olsly + Ol

where

Oy = My —m; (A2-17a)

Oy = myy—mys (A2-17b)



756 COLOR COORDINATE CONVERSION

o = my (A2-17¢)
Oy = My +imyy + gy =y = Ty3 = M3y (A2-17d)
Ois = My + gy + My = My3 = Tp3 = M3y (A2-17¢)
Olg = M3+ Myy + Mgy (A2-17f)
Oy = myy = My; (A2-17g)
Og = My, — My (A2-17h)
oy = My (A2-17)

and the m,; are conversion matrix elements from the (7}, 7,, T5) to the (T, fz, T)
coordinate system.

CASE 4. LUMINANCE/CHROMINANCE TO TRISTIMULUS
CONVERSION

In the general situation in which the original chromaticity coordinates are not the
CIE x—y coordinates, the conversion is made in a two-stage process. From Egs.
A2-1to A2-3,

Ty = npX+n,Y+n,Z (A2-18)
Ty = ny X+nyY+nyZ (A2-19)
T3 = ny X+n3,V+ny,Z (A2-20)

wherg the m,; are the constants for a conversion from (X, Y, Z) tristimulus values to
(T, Ty, T3) tristimulus values. The X and Z tristimulus values needed for substitu-
tion into Eqs. A2-18 to A2-20 are related to the source chromaticity coordinates
by
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Oty + Oty + O
Y= L1’ 722° 73 (A2-21)
OLyt) + Oigly + Ol
_ (04 =0l = 0lg) 1y + (Ol — 0Ly — OLg )ty + (OLg — Oy —ocg)Y
Oyt + Oigly — Ol

7 (A2-22)

where the o, are constants for a transformation from (¢, ,) chromaticity coordi-
nates to (x, y) chromaticity coordinates.






APPENDIX 3

IMAGE ERROR MEASURES

In the development of image enhancement, restoration and coding techniques, it is
useful to have some measure of the difference between a pair of similar images. The
most common difference measure is the mean-square error. The mean-square error
measure is popular because it correlates reasonably with subjective visual quality
tests and it is mathematically tractable.

Consider a discrete F (j, k) forj=1,2,....,J and]c =1, 2,..., K, which is regarded as
a reference image, and consider a second image F(j, k) of the same spatial dimen-
sions as F'(j, k) that is to be compared to the reference image. Under the assumption
that F' (j, k) and F(j, k) represent samples of a stochastic process, the mean-square
error between the image pair is defined as

Evse = ELFC, O-F(j, k)?} (A3-1)

where E{ -} is the expectation operator. The normalized mean-square error is

E{FG. b -F by (A3-2)
E{|F(j, k)*}

gNMSE =

Error measures analogous to Eqs. A3-1 and A3-2 have been developed for determin-
istic image arrays. The least-squares error for a pair of deterministic arrays is
defined as

J K
Eise = 32 X Y IFGR-FO b (A3-3)
j=lk=1
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and the normalized least-squares error is

(A3-4)

gNLSE =

J K . s
3 Y IFG k) - FG, k)
j=1lk=1

J K
3 3 IFG b
j=1k=1

Another common form of error normalization is to divide Eq. A3-3 by the squared
peak value of F(j, k). This peak least-squares error measure is defined as

J K . 2
3 Y IFG k- FG, bl
j=1lk=1

(A3-5)
[MAX{F(j, )}’

§PLSE =

In the literature, the least-squares error expressions of Eqs. A3-3 to A3-5 are some-
times called mean-square error measures even though they are computed from
deterministic arrays. Image error measures are often expressed in terms of a signal-
to-noise ratio (SNR) in decibel units, which is defined as

SNR = —10log,,{&} (A3-6)

A common criticism of mean-square error and least-squares error measures is
that they do not always correlate well with human subjective testing. In an attempt to
improve this situation, a logical extension of the measurements is to substitute pro-
cessed versions of the pair of images to be compared into the error expressions. The
processing is chosen to map the original images into some perceptual space in which
just noticeable differences are equally perceptible. One approach is to perform a
transformation on each image according to a human visual system model such as
that presented in Chapter 2.



APPENDIX 4

PIKS COMPACT DISK

This appendix describes the installation of the PIKS Scientific Application Program
Interface from the compact disk affixed to this book. The appendix also provides a
listing of the contents of the compact disk.

A4.1. PIKS SCIENTIFIC INSTALLATION

To install the CD on a Windows 2000, NT, XP or Windows Vista computer, insert
the CD into the CD drive and follow the screen instructions.

To install the CD on a Solaris computer, create a subdirectory called PIKSrelease,
and make that your current working directory by executing:

mkdir PIKSrelease
cd PIKSrelease

Insert the PIKS CD in the CD drive and type:
/cdrom/piks sci 2.1#1#1/install.sh

See the README text file in the PIKSrelease directory for further installation
information.
For further information about the PIKS software, please send email requests to:

pratt@pixelsoft.com or paquettel 13 @yahoo.com
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762 PIKS COMPACT DISK
A4.2. COMPACT DISK DIRECTORY

The compact disk contains the following directories or folders.
ProgrammersManual

PDF files: Front.pdf, Partl.pdf, Part2.pdf, Appendicies.pdf
Images/Piks

PIKS image file format files of source images
Images/Tiff

TIFF image file format files of many of the figures images in the book
Demos

C program Solaris and Windows source and executable demonstration programs
SciExamples

C program Solaris and Windows source and executable programs
DipExamples

C program Solaris and Windows executables of Digital Image Processing pro-
gramming exercises

Include

Header files necessary to build a PIKS project
Lib

Static library files necessary to build a PIKS project
Utilities

Various utilities to convert between image file formats
PIKSTool

Windows executables of a graphical user interface method of executing many of
the PIKS operators without program compilation.

PIKSToolManual

PDF file of PIKSTool User’s Manual.
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INDEX

Aberrations, 311
Absolute value, histogram, 541
Achromatic, 293
Ac term, 189
Adaptive histogram modification, 265
Additive

color system, 49

linear system, 6
Ade’s texture features, 568
Adjoint model, 355
Affine transformation, 394
Aliasing

effects, 103

error, 103
Amplitude

features, 537

level slicing, 256

projections, 587

scaling, 249

segmentation methods, 580
API, see Application program interface
Application program interface, 629
Area measurement, 627
Argyle operator, 480
ARMA parameter estimation, 377
Atomic regions, 590
Atmospheric turbulence model, 313
Autocorrelation

function, 16, 530

histogram, 540

of system output, 20

spread features, 557

texture features, 556

theorem, 13
Autocovariance function, 18
Autoregressive process, 377
Average

area, 631

contrast, 592

length, 631

perimeter, 595

spatial, 5
width, 631

Banded matrix, 172
Bandlimited, 98
Bandstop filter, 274
Barrel distortion, 401
Bartlett windowing function, 175, 236
Basic image interchange format, 682
Basis
functions, 192, 542
matrices, 192
patterns, 542
Bayer color filter, 121
Bayes minimum error, 489
Bays, 624
B-distance, 536
Bell interpolation kernel, 414
Bessel function, 97, 236
Between class scatter matrix, 589
Bezier polynomial, 596
Bhattacharyya distance, 536
BIIF, see Basic image interchange format
Bilevel luminance thresholding, 580
Bilinear interpolation, 116, 265, 411
Bit quads, 629
Blackbody source, 45
Black component, 75
Blackman windowing function, 175, 236
Blind image restoration, 373
Block
mode filtering, 232
Toeplitz, 155
Blur matrix, 179
Bond, pixel, 422
Boundary segmentation, 595
Boxcar operator, 478
Bridge, 426
Brightness, 25
Brodatz texture, 546
B-spline, 114

Digital Image Processing: PIKS Scientific Inside, Fourth Edition, by William K. Pratt
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Bug follower
basic, 614
backtracking, 615
Bug following, 614
Butterworth filter
high-pass, 240
low-pass, 240

Camera imaging model, 407
Canny operator, 482
Cartesian coordinate system, 388
Cartesian-to-polar conversion, 397
Catchment basin, 594
Cathode ray tube, 3, 47
CCD, see Charged coupled device
CCIR, see Comite Consultatif International des
Radiocommunications
CCIR receiver primary color coordinate system, 66
Center of gravity, 634
Centered
superposition, 169
reflected boundary superposition, 169
zero boundary superposition, 170
zero padded superposition, 169
Central moments, normalized, 641
Central spatial moment
continuous, 631
discrete, 633
Centroid, 634
Charged coupled device, 110, 332
Chain
code, 615
definition of, 616
Chebyshev
basis set, 568
polynomials, 501, 568
Chernoff bound, 536
Chessboard distance, 625
Choroid, 27
Chroma, 80
Chromatic adaption, 32
Chromaticity
coordinates, 59
diagram, 59, 67, 70
CIE, see Commission Internationale
de I’Eclairage
CIE spectral primary color coordinate system, 65
Circulant
convolution, 184
matrix, 182
superposition, 182
Circularity, 630
CIS, see contact image sensor
City block distance, 625
Clipping, contrast, 245

Close operation
binary image, 453
gray scale image, 459
Clustering, 587
CMOS, see complementary metal-oxide
semiconductor
Coarse-fine matching, 670
Coarseness, texture, 545
Coiflets, 211
Color blindness, 33
Color coordinate conversion, 753
Color coordinate systems
CCIR, 66
CIE, spectral, 65
EBU, 66
IHS, 84
Karhunen-Loeve, 84
L*a*b*, 71
L*u*v*, 72
NTSC, 66
Photo YCC, 83
retinal, 86
SMPTE, 67
UVW, 69
U*VEW* 71
XYZ, 67
YCbCr, 82
YI1Q, 80
YUV, 81
Color cube, 58
Color film model, 321
Color image
edge detection, 522
enhancement, 291
restoration, 381
Colorimetry, 45, 54
Color matching
additive, 49
axioms, 53
subtractive, 52
Color spaces
colorimetric, 64
nonstandard, 83
subtractive, 73
video, 76
Color systems
additive, 49
subtractive, 49
Color vision
model, 39
verification of model, 55
Column
gradient, 471



moment, first-order, 634

moment of inertia, 637
Comite Consultatif International des

Radiocommunications, 67
Commission Internationale de I'Eclairage, 46
Companding quantizer, 145
Compass gradient arrays, 485
Complement, 426
Complementary metal-oxide semiconductor, 110
Conditional

density, 16

inverse, 745

mark, 431
Condition number, 353
Cones

description of, 27

distribution of, 28

sensitivity of, 27
Connected

components, 627

eight, 422

four, 422

minimally, 423

six, 403
Connectivity

definitions, 421

of pixels, 423
Consistent system of equations, 349, 747
Constrained image restoration, 369
Constrained least squares filter, 34
Contact image sensor, 110
Contour

coding, 615

following, 614
Contrast

clipping, 249

definition of, 34

manipulation, 248

modification, 252

scaling, 249

sensitivity, 30

stretching, 251
Control points, 402
Control point detection, 675
Convex

deficiency, 624

hull, 624
Convolution

circulant, 182

discrete image, 165

finite area, 172

Fourier domain, 225, 226

Hadamard domain, 225

INDEX

integral, 8

operation, 9

sampled image, 174

symbol, 8

transform domain, 224

two-dimensional, 13
Co-occurrence matrix, 564
Cornea, 27
Correlation function

basic, 665

of image array, 153

normalized, 665

statistical, 667
Correlation matrix, 154
Cosine transform, 200
Covariance

function, 153

histogram, 541

matrix, 154

stationary, 155
Crack code, 615, 627
Cross

correlation, 653, 665

power spectrum, 671

second derivative, 530, 669
CRT, see Cathode ray tube
Cubic B-spline

definition of, 114

interpolation kernel, 414
Cubic convolution, 114
Cumani operator, 528
Cumulative

histogram, 261

probability distribution, 261
Current boundary, 592
Curvature

definition of, 646

Fourier series of, 646
Curve fitting

iterative end point, 596

polynomial, 596
Cutoff frequency, 237, 240

Daisy petal filter, 572

Daub4, 210

Daubechies transform, 210

Dc term, 189

Decorrelation operator, 558
Demosaicking, 122

Dependency matrix, 563

Derivative of Gaussian edge gradient, 481
Derivative matched filter, 659

Detection
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image, 651

probability of edge, 488
Deterministic image representation, 3
Diagonal fill, 425
Diagonalization of a matrix, 164
Dichromats, 33
Difference of Gaussians, 498
Differential operators, 9
Diffraction

definition of, 311

limited, 311
Dilation

eight-neighbor, 427

generalized, 443

gray scale image, 457

properties of, 450
Dirac delta function

continuous, 6

discrete, 166

sampling array, 92
Directed derivative edge detector, 501
Directional derivative, 10, 100
Direct product, matrix, 698
Dispersion feature, 538
Display

cathode ray tube, 47

liquid crystal, 47

point nonlinearity correction, 333

spatial correction, 335
Distance

chessboard, 625

city block, 625

Euclidean, 625

magnitude, 625

map, 626

maximum value, 625

measures, 625

transform, 626
Dither function, 337
DOG, see Difference of Gaussians
Duda and Hart Hough transform, 601
Dye layer gammas, 320

EBU, see European Broadcast Union
EBU receiver primary color coordinate systems,
66
Edge crispening
enhancement, 284
linear, 284
masks, 284, 285
Edge detection
color image, 522
first-order derivative, 471
luminance image, 465

probability of, 509
second-order derivative, 492
subjective assessment, 516
Edge detector
edge fitting, 506
figure of merit, 514
first derivative, 471
localization, 515
orientation, 510
performance, 508
second derivative, 492
Edge fitting, 506
Edge gradient, 471
Edge linking
curve fitting, 596
heuristic, 598
Hough transform, 607
iterative end point, 598
Edge models, 466, 467, 468
Edge probability
of correct detection, 488
of edge misclassification, 488
of false detection, 488
Eigenvalue, definition of, 743
Eigenvector
definition of, 743
transform, 211
Eight-connectivity, 422
Eight-neighbor
dilate, 427
erode, 429
Emulsion, film, 304
Energy, histogram, 539, 541
Entrance pupil, 311
Entropy, histogram, 539, 541
Equalization, histogram, 259
Ergodic process, 19
Erosion
eight-neighbor, 429
generalized, 446
gray scale image, 457
properties of, 450
Euclidean distance, 625
Euler number, 624, 630
European Broadcast Union, 66
Exit pupil, 311
Exoskeleton, 441
Exothin, 437
Expectation operator, 16

Exponential probability density, 15

Exposure, film, 315
Extended data vector, 222
Extraction weighting matrix, 356



Eye
cross-sectional view, 27
physiology, 26

Facet modeling, 501
False color, 296
Fast Fourier transform
algorithm, 199
convolution, 225
Fatten, 427
FDOG, see First derivative of Gaussian operator
Features
amplitude, 537
histogram, 538
texture, 555
transform coefficient, 542
Feature extraction, 535
FFT, see fast Fourier transform
Figure of merit
edge detector, 514
feature, 536
Film
color, 318
emulsion, 314
exposure, 315
gamma, 317
monochrome, 314
speed, 317
Filter
bandstop, 274
Butterworth, 240
design, 233
Gaussian, 239
high-pass, 238, 240
homomorphic, 273
inverse, 336
low-pass, 237, 238, 239
pre-sampling, 106
whitening, 558, 658
Wiener, 338
zonal, 237, 238
Finite area
convolution, 172
superposition, 166
First derivative of Gaussian operator, 481
First-level
Haar wavelets, 209
scaling signals, 209
First moment, 16
First-order
row moment, 633
column moment, 634

INDEX

Flooding, 594
Focal length, 404
Four-connectivity, 422
Fourier
descriptors, 645
spectra texture features, 556
Fourier transform
continuous
definition of, 10
properties of, 12
convolution, 225
discrete, definition of, 193
fast, 199, 234,
feature masks, 543
features, 543
filtering, 225
pairs, 11
Fovea, 28
Fovean sensor, 120
Frei—Chen operator, 476

Gabor filter, 572
Gagalowicz counterexample, 554
Gain correction, 332
Gamma

correction, 77

estimation, 373

film, 317

image, 77
Gaussian error function

definition of, 255

transformation, 254
Gaussian filter, 239
Gaussian probability density

continuous, 15

discrete, 159

discrete conditional, 525
Generalized

dilation, 443

erosion, 447

inverse, 350, 744

linear filtering, 214

linear operator, 149
Geometrical image

modification, 387

resampling, 411
Geometrical mean filter, 343
Geometric

attributes, 630

distortion,401

moment, 633
Gibbs phenomenon, 175
Gradient

column, 471

continuous, 10
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discrete, 471

row, 471
Grassman’s axioms, 53
Gray scale

contouring, 136

dependency matrix, 564
Greedy algorithm, 610
Haar

matrix, 207

transform, 207

wavelets, 207
Hadamard

matrix, 204

transform, 204
Halftoning, 111

Hamming windowing function, 175, 236

H&D curve, 317

Hanning windowing function, 175, 236

Hartley transform, 204
H-break, 429
Header file, 712
Hexagonal grid, 423
High-pass filter
Butterworth, 240
zonal, 237, 238
Histogram
absolute value feature, 541
autocorrelation feature, 540
covariance feature, 541
cumulative, 261
definition of, 705
energy feature, 539, 541
entropy feature, 539, 541
equalization, 259
features, 538
first-order, 160
hyperbolization, 264
inertia feature, 541
inverse difference feature, 541
kurtosis feature, 539
mean feature, 539
measurements, 160
mode, 540
modification,
adaptive, 265
non-adaptive, 259
one-dimensional features, 539
property, 585
second-order, spatial, 160
shape, 539
skewness feature, 539

standard deviation feature, 539
two-dimensional features, 540
Hit or miss transformations, 424
Hole, 623
Homogeneous coordinates, 391
Homomorphic filtering, 273
Hotelling transform, 211
Hough transform
basic, 600
Dude and Hart version, 601
edge linking, 600

O’Gorman and Clowes version, 604

Hu’s invariant moments, 641
Hue, 25, 84

Hueckel edge detector, 507
Hungarian prototype, 710
Hurter and Driffield curve, 317
Hyperbolization, histogram, 264

Idempotent, 434

IEC, see International Electrotechnical

Commission
IIF, see Image interchange facility
[ll-conditioned integral, 338
Iluminant
C, 66
D65, 66, 67
E, 65
Image
centroid, 634
classification, 535
continuous, definition of, 3
data object, 710, 712
detection, 651
discrete, definition of, 147
dispersion, 538
enhancement, 247
error measures, 759
feature, 535
feature extraction, 535
matrix, 48
quantization, 127
reconstruction, 91
registration, 651
restoration, 329
restoration models, 307, 322
sampling, 91, 120
segmentation, 535, 579
statistical, definition of, 3
stochastic characterization, 14
surface, 633
Image interchange facility, 682
Image representation



deterministic, 3
statistical, 3
vector space, 147
Impulse response
Bessel, 97
definition of, 8
function array, 166
sinc, 96
Inconsistent system of equations, 349, 747
Index assignment, 697
Inertia
histogram feature, 541
moment of, 637
texture function, 541
Intensity, 84
Interimage effects, 320
Interior
fill, 425
pixel remove, 429
Internal boundary, 592
International Electrotechnical Commission, 643
International Organization for
Standardization, 643
Interpolation
bilinear, 116, 411
by convolution, 413
error, 118
methods, 411
nearest-neighbor, 411
piecewise linear, 116
Interpolation function
bell, 115, 414
cubic B-spline, 114,411, 414
cubic convolution, 114
definition of, 98
Gaussian, 115
sinc, 113
square, 113
triangle, 113
Interpolation kernels
bell, 414
cubic B-spline, 414
peg, 414
pyramid, 414
Intersection, 424
Invariant moments
control point warping, 675
definition of, 641
Hu’s, 641
Inverse
difference, histogram, 541
filter, 336
function transformation, 256

INDEX

Iris, 28
ISO, see International Organization for
Standardization
Isolated pixel remove, 428
Isoplanatic, 8
Iterative
blind deconvolution, 378
endpoint fit, 596
Joint probability density, 15, 597
JPEG, 196
Julesz
conjecture, 550
texture fields, 548

Kaiser windowing function, 236
Karhunen—Loeve

color coordinate system, 84

transform, 186
Kernel, small generating, 170
Key

component, 75

pixel, 696
Kirsch operator, 485
Krawtchouk moments, 643
Kurtosis, histogram feature, 539

L*a*b* color coordinate system, 71
Labeling, segment, 614
Lagrange multiplier, 130, 370
Lagrangian
estimate, 370
factor, 370
Lakes, 624
Laplacian
continuous, 471
definition of, 494
density, 16
discrete matched filter, 62
edge detector, 495
eight-neighbor, 495
four-neighbor, 494
generation, 494
matched filter, 660
of Gaussian edge detector, 496
operator, 10
zero crossing, 499
Lateral inhibition, 37
Laws’ texture features, 567
LCD, see Liquid crystal display
Least squares
error, 748, 759
inverse, 745
modeling error, 749

775



776 INDEX

Left-justified form, 163
Legendre moments, 643
Lens transfer function, 108, 313
Level slicing, 257
Light

definition of, 23

sources, 24
Lightness function, 137
Line

definition of, 466

detection, 529

models, 466
Linearity, 12
Linear operator, 123
Linear systems

additive, 6

consistent, 703

inconsistent, 703

solutions to, 702
Liquid crystal display, 47, 111
Logarithmic

ratio of images, 299

transformation, 255
Logical operators, 570

Log-normal probability density, 15

LOG, see Laplacian of Gaussian
Lookup table, 404, 706
Low-pass filter
Butterworth, 240
Gaussian, 239
zonal, 237
Luma, 80
Lumen, 48
Luminance
boundary segments, 465
calculation of, 59
definition of, 60
edges, 465
Luminosity coefficients, 60
Luminous flux, 48
LUT, see Lookup table

L*u*v* color coordinate system, 72

Mach band, 32

Macleod operator, 480

Magnification, image 389

Magnitude distance, 625

Majority black, 430

Markov process
autocovariance function, 18
covariance matrix, 156
spectrum, 18

Match point control, 700
Matched filter
continuous, 655
derivative, 659
deterministic, 655
discrete, deterministic, 662
discrete, stochastic, 663
Laplacian, 660
stochastic, 660
Matrix
addition, 738
banded, 172
between class scatter, 589
blur, 179
co-occurrence, 564
correlation, 154
covariance, 154
definition of, 707
dependancy, 564
diagonal, 164
diagonalization, 164
direct product, 740
image, 148
inverse, 739
Markov covariance, 156
multiplication, 738
norm, 741
orthogonal, 191
rank, 741
selection, 184
sparse, 218
trace, 740
transpose, 740
tridiagonal, 202
within class scatter, 589
Max quantizer, 131
MAX, 280
MAXIMIN, 280
Maximum
entropy, 362
likelihood ratio, 489
value distance, 625
Maxwell triangle, 58
Mean

of continuous probability density, 16

feature, 537
histogram feature, 539
matrix, 153

square error, 715
vector, 153

Mean-square error, normalized, 759



Medial axis

skeleton, 438

transformation, 438
Median

definition of, 277, 511

feature, 537

filter, 277

filtering, 277
Metameric pairs, 25
Mexican hat filter, 498
Microstructure, texture, 566
MIN, 280
MINIMAX, 280
Minification, image, 389
Minimally connected, 423
Minimum vector dispersion, 529
Minkowski addition, 444
Misregistration detection

generalized, 674

scale and rotation, 672

translational, 664
Mode, definition of, 540
Modulation transfer function, 34, 312
Moire patterns, 103
Moment of inertia, 637
Moments

first, 16

Krawtchouk, 643

Legendre, 643

pseudo Zernike, 643

second, 16

spatial

continuous, 631
discrete, 633

Zernike, 643
Monochromats, 33
Monochrome vision model, 33
Morphological image processing, 421
Morphological operators

binary conditional, 432

binary unconditional, 425

gray scale, 457
MPEG, 196
Moving average process, MA, 377
Multi-plane image restoration, 379
MTF, see Modulation transfer function
Multispectral image enhancement, 289
Multilevel

color component thresholding, 585

luminance thresholding, 582
Munsell color system, 26
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Nalwa—Binford edge detector, 508
NAS-RIF method, 378
National Television Systems Committee, 66
Nearest neighbor interpolation, 411
Neighbourhood array, 708
Nevatia—Babu masks, 487
Neyman-Pearson test, 489
Noise
cleaning
adaptive, 284
Fourier domain, 271
linear, 268
masks, 269
nonlinear, 275
spatial domain, 269
techniques, 267
models, 335
Nonreversal film process, 314
Norm
matrix, 697
minimum, 706
vector, 697
Normalized least squares error, 716
NTSC, see National Television Systems
Committee
NTSC receiver primary color coordinate system,
66
Nyquist
criterion, 97
rate, 97

Object components, 590
O’Gorman and Clowes Hough transform, 604
One-to-one mapping, 6
Open operation
binary image, 454
gray scale image, 459
Operators
circulant
convolution, 180
superposition, 178
finite area
convolution, 167
superposition, 166
linear, 149
pseudoinverse, 744
sampled image
convolution, 176
superposition, 176
Optical systems
atmospheric model, 313
models, 313
Optical transfer function, 33, 312
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Organs of vision, 23
Orientation

angle, 639

axis, 639
Orthogonality

condition, 339

principle, 366
Orthogonal

gradient generation, 471

matrix, 191
Orthonormality conditions, 190
OTF, see Optical transfer function
Outlier removal, 276
Overdetermined

equations, 349

matrix, 349, 745
Oversampled, 95

Parametric
estimation filters, 342
low-pass filter, 269
Parseval’s theorem, 13
PCM, see Pulse code modulation
Peak least squares error, 760
Peg interpolation kernel, 414
Perimeter measurement, 627
Peripheral contrast, 592
Perspective
matrix, 405
transformation, 404
Phase
angle, 11
correlation, 671
Photo YCC color coordinate system, 83
PhotoCD, 83
Photographic process
color film model, 318
monochrome film model, 314
Photography
color, 318
monochrome, 314
Photopic vision, 28
Photometry, 45
PIKS, see Programmer’s imaging kernel system
PIKS
application interface, 702
application program interface, 681
conformance profiles, 703
convenience functions, 694
data objects, 682
data types, 683
functional overview, 681
image objects, 683

imaging model, 681
mechanisms, 692
operator models, 695, 696
operators, 685
scientific, 681
tools, 689
utilities, 690
PIKS Scientific
C language binding, 710
profile, 703
overview, 704
Pincushion distortion, 401
Pinhole aperture, 311
Pixel
bond, 422
definition of, 147
record, 708
stacker, 424
Planck’s law, 46
PLSE, see Peak least squares error
PMED, 280
Point
image restoration, 329
spread function, 8§
Polar-to-Cartesian conversion, 398
Power
law transformation, 253
spectral density
continuous, 17
discrete, 157
spectrum
continuous, 17
discrete, 157
filter, 342
Prairie fire analogy, 438
Pratt, Faugeras and Gagalowicz texture fields, 551
Prewitt
compass edge gradient, 484
orthogonal edge gradient, 475
Primary colors, 49
Principal components transformation, 164, 300
Prism, 25
Probability density
conditional, 16
exponential, 15
Gaussian, 15, 159, 525
joint, 15, 597
Laplacian, 16
log-normal, 15
models, image, 158
Rayleigh, 15
uniform, 16



Programmer’s imaging kernel system, 679, 681

Projections, amplitude, 587
Property histograms, 585
Pseudocolor, 293
Pseudoinverse
computational algorithms, 355
operators, 744
spatial image restoration, 345
transform domain, 348
Pseudomedian filter, 280
Pseudo Zernike moments, 643
Pulse code modulation, 136
Pupil
entrance, 311
exit, 311
Pyramid interpolation kernel, 414

Quadratic form, 742
Quantization
color image, 139
companding, 131
decision level, 128
definition of, 127
Max, 131
monochrome image, 136
reconstruction level, 128
scalar, 127
uniform, 131
Quench
distance, 438
point, 438

Radiant flux, 45
Rainfall, 594
Ramp edge, 465
Rank, matrix, 127, 741
Ratio contour, 597
Ratio of images, 298
Rayleigh probability density, 15
Reciprocity failure, 305
Reconstruction

filter, 96

levels, 159
Rectangular windowing function, 236
Refective object, 24
Reflectivity, 23
Region growing, 590
Region-of-interest, 609, 697, 709
Registration, image, 664
Regression image restoration, 365
Relative luminous efficiency, 4, 48
Resampling, image, 411

INDEX

Resolution loss, 117
Restoration, image, 329
Retina, 27
Retinal cone color coordinate system, 86
Reversal film process, 314
Reverse function transformation, 255
Ridge, 594
Ringing artifacts, 287
Roberts
edge gradient, 473
operators, 474
Robinson
3-level operator, 485
5-level operator, 485
Rods
description of, 27
sensitivity of, 27
ROI, see Region-of-interest
Roof edge, 466
Rotation
image, 390
image, separable, 394
three-dimensional, 409
Row
gradient, 471
moment, first-order, 633
moment of inertia, 637
Row-column cross moment of inertia, 637
Rubber band transformation, 255
Rubber-sheet
stretching, 400, 623
transformation, 623
Running difference edge gradient, 472

Sampled image
convolution, 176
superposition, 176

Sampling
deterministic fields, 92
random fields, 97

Saturation, 25, 84

Scaling
contrast, 249
linear, 12
image, 389
separable image, 394

Scatter matrices
between class, 589
within class, 589

Sclera, 27

Scotopic vision, 28

Search area, 666

Second moment, 16
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Segment labelling, 613 SMPTE, see Society of Motion Picture and

Segmentation Television Engineers
amplitude, 580 SMPTE receiver primary color
boundary, 595 coordinate system, 67
clustering, 587 Snakes boundary detection, 609
image, 579 SNR, see Signal-to-noise ratio
region growing, 590 Sobel operator, 476

texture, 611 Society of Motion Picture and
Selection matrix, 184 Television Engineers, 67
Sensor point nonlinearity correction, 329 Space invariant, 8

Separability, 12
Separated running difference edge
gradient, 472
Sequency
definition of, 205
property, 205
Sequential search method, 632
SGK, see Small generating kernel
Shape
analysis, 623
Fourier descriptors, 645
geometric attributes, 630
orientation descriptors, 643
topological attributes, 623
Shrinking, 431
Shearing, image, 394
Sifting property, 6
integral, 7
property, 6
Signal-to-noise ratio
continuous matched filter, 656
definition of, 760
discrete matched filter, 662
edge, 492
Wiener filter power, 340
Silver halide, 314
Simultaneous contrast, 32
Sinc function, 96
Sine transform, 200
Singularity operators, 6
Singular value, 743
Singular value decomposition (SVD)
definition of, 742
pseudoinverse, 335
texture features, 574
Six-connectivity, 423
Skeletonizing, 437, 647
Skewness, histogram, 539
Small generating kernel
convolution, 241
definition of, 170
Smoothing
matrix, 370
methods, 370

Sparse matrix, 218
Sparseness index, 200
Spatial
average, 5
differentials, 13
frequency
continuous, 10
discrete, 193
moments
continuous, 631
discrete, 633
response, 35
warping, 400
Spectral
energy distribution, 23
factorization, 355, 658
Speed, film, 317
Spline fitting, 567
Split and merge, 592
Spot
definition of, 468
detection, 529
models, 470
Spur remove, 428
Stacking
operation, 148
operators, 148
Standard deviation
image feature, 537
histogram, 539
Standard
illuminants, 65, 69
observer, 47
primaries, 69
Static array, 709
Stationary
process, 17
strict-sense, 17
wide-sense, 17
Statistical differencing
basic method, 288
Wallis’ method, 289



Statistical
correlation function, 667
image representation, 3
mask, 669
Step edge, 465
Stochastic
process, continuous, 15
texture fields, 542
Stretching, contrast, 251
Structuring element
decomposition, 451
definition of, 444
Subtractive color system, 49
Superposition
continuous, 8
discrete
centered forms, 168, 169, 170
circulant, 181
finite area, 165
left-justified form, 167
sampled image, 174
series formation, 165
transform domain, 220
vector space formulation, 171
integral, 8
Surface, image, 638
SVD, see Singular value decomposition (SVD)
SVD/SGK convolution, 242
SVD pseudoinverse, 359
Symmetric region growing, 592

Template
edge detector, 484
gradient, 484
matching, 651
region, 665
Temporal averaging, 374
Texture
artificial, 545
coarseness, 545
definition of, 545
features, 555
natural, 546
segmentation, 611
visual discrimination of, 547
Texture features
autocorrelation, 556
decorrelation methods, 558
dependency matrix, 563
edge density, 556
Fourier spectra, 556

INDEX

Gabor filter, 571
microstructure, 566
singular value decomposition, 574
transform and wavelet, 573
Texture fields
Julesz, 548
Pratt, Faugeras and Gagalowicz, 551
stochastic, 547
Thickening, 441
Thinning, 434, 647
Thinness ratio, 630
Threshold selection, 486
Thresholding
bi-level, 580
Laplacian, 582
multilevel, 582
Time average, 5
Toeplitz matrix, 155
Topological attributes, 623
Trace, matrix, 740
Transfer function generation, 233
Transform
coefficient features, 542
domain
convolution, 224
processing, 217
superposition, 220
Translation
image, 388
three-dimensional, 408
Translational misregistration detection
basic correlation method, 665
phase correlation method, 671
sequential search method, 671
statistical correlation method, 667
two-state methods, 670
Transmissive object, 23
Transmissivity, 23
Transpose, matrix, 695
Trend, 209
Trichromatic theory, 29
Tridiagonal matrices, 202
Tri-filter camera, 120
Tristimulus values
calculation of, 57
definition of, 50
transformation, 61
Truncated pyramid operator, 480
Tuple, 705
Two-dimensional
basis function, 192
system, 5
Two’s complement, 135
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Undercolor removal, 75
Underdetermined
equations, 349
matrix, 349, 745
model, 326
Undersampled, 95
Uniform
chromaticity scale, 69
probability density, 16
quantizer, 131
Union, 424
Unitary
matrix, 191
transform
definition of, 189
series formulation, 189
separable, 190
vector space formulation, 191
Unsharp masking, 286
UVW Uniform Chromaticity Scale color
coordinate system, 69
U*V#W* color coordinate system, 71

Valley, 594
Value bounds object, 710
Variance
definition of, 17
function, 153
Gaussian density, 15
matrix, 154
Vector
algebra, 732
definition of, 737
differentiation, 742
inner product, 741
median filter, 293
norm, 741
outer product, 742
rank operator, 529
space image representation, 147
Video color spaces, 76
Vision models
color, 39
logarithmic, 36
monochrome, 33
verification of, 55
Visual phenomena, 29
Voroni
diagram, 626
tesselation, 625

Wallis

operator, 282

statistical differencing, 282
Walsh functions, 206
Warping

polynomial, 400

spatial, 400
Watershed

definition of, 594

segmentation, 593
Wavelet

de-noising, 284

first-level Haar, 209

matrix, 208

transform, 208, 210
Weber fraction, 30
Whitened, 663
Whitening

filter, 558, 658

matrix, 663, 668
‘White reference, 49
Wide range scaling, 257
Wiener

estimation, 365, 404

filter, 338
Wien’s law, 46
Windowing functions, 235
Window-level transformation, 249
Window region, 665
Within class scatter matrix, 589
‘World coordinates, 390
Wraparound error, 227

XYZ color coordinate system, 67

YCbCr CCIR Rec. 601
transmission color coordinate system, 82

YIQ NTSC transmission color coordinate
system, 80

YUV EBU transmission color coordinate
system, 81

Zernike moments, 643
Zero crossing, 471, 476
Zero padding, 228
Zonal filter
high-pass, 238
low-pass, 237



(@) dolls_linear

(b) dolls_gamma

Color photographs of the dolls_linear and the dolls_gamma color images. See pages
74 and 80 for discussion of these images.



(a) Gray scale chart (b) Pseudocolor of chart

(c) Seismic (d) Pseudocolor of seismic

Figure 10.5-3. Pseudocoloring of the gray chart and seismic images. See page 296
for discussion of this figure.



(a) Infrared band (b) Blue band

() R=infrared, G=0, B=blue (d) R=infrared, G=1/2 [infrared +blue],
B=blue

Figure 10.5-4. False coloring of multispectral images. See page 298 for discussion of
this figure.



(a) Color representation (b) Red component

(c) Green component (d) Blue component

Figure 15.6-1. The peppers_gamma color image and its RGB color components.
See page 523 for discussion of this figure.





